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Abstract

Continuous Integration (CI) is a software development practice that enables de-
velopers to build software more reliably and quickly. Most organizations have
started adopting CI, however, only a few of them achieve the expected benefits.
The reason is that living up to the recommended practices (called principles) of
CI is not easy and developers tend to follow anti-patterns, which are ineffective
solutions to recurrent problems. Anti-patterns violate principles and lower the
effectiveness of CI.

In this dissertation, we characterize the problem of anti-patterns to implement
solutions that help developers follow principles. We start with classifying the
anti-patterns encountered by developers in practice and identifying their four root
causes, which are (i) the poor knowledge of the prerequisites for adopting CI, (ii)
the difficulty of inspecting build failure logs, (iii) the presence of bad configurations,
and (iv) the wrong usage of a CI process. While only better coaching in CI can
efficiently remove the former, we implement several approaches to address the other
causes. To improve the understandability of build failure logs, we develop Bart, a
tool that produces summaries for the most common build failure types. To identify
anti-patterns caused by configuration smells that developer should remove, we
propose CD-Linter, a semantic linter for CI/CD configuration files. We implement
CI-Odor, an automated reporting tool that leverages information from repository
and build history, to monitor the wrong adoption of CI over time.

The results of multiple empirical studies conducted with professional developers
show that the proposed approaches are effective at identifying and removing the
aforementioned causes of anti-patterns and, consequently, at enforcing a principle-
driven continuous integration practice.
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1
Synopsis

The complexity of software systems and the continuous demand for new features
require software to be produced in a collaborative manner [122]. Developers work
in teams and manage their code contributions sharing a repository and an issue-
tracking system. Every developer picks or gets assigned to one or more coding tasks.
The implementation starts when the developer checks out the current state of a
project, which typically corresponds to the latest version stored in the repository,
and works independently on her tasks. As a developer completes her tasks, she
is ready to copy her code to the repository. If the existing code is unchanged, a
developer can safely add her new changes. Otherwise, several merge conflicts may
arise, for example when different developers have worked on the same method’s
implementation or when a developer has relied on methods whose behavior has
meanwhile been modified by others. Resolving merge conflicts can be difficult,
especially when changes diverge significantly [73]. The likely severity of those
conflicts increases as more people work on the same project components, which
might lead to several changes to the same code in parallel, and as more time passes
since the last checkout from the repository, which might decrease the validity of
developers’ assumptions about the current project’s state [74]. Severe conflicts
have negative consequences for the business [73]. Testing and fixing integration
bugs can take long and the planned releases are running late.

Continuous Integration (CI) is the practice that enables developers to reduce
the frequency and severity of merge conflicts, and to build reliable software that is
immediately ready for being deployed and potentially released. In their seminal
book on this topic, Duvall et al. [25] define CI as follows:



4 Chapter 1. Synopsis

Continuous Integration is the practice that requires developers to integrate
changes into a shared repository frequently, preferably several times a day. Each
integration gets typically verified (i.e., changes get compiled, tested, and quality
checked) through an automated build infrastructure.

Given its proven benefits, such as faster releases [46] and increased developer
productivity [124], most of the organizations started adopting CI. Based on a
recent study, 62% of the organizations have a build system configured in their
projects.1 However, the mere introduction of an automated build infrastructure in
the development workflow is not sufficient to practice CI well and most organizations
do not achieve the expected benefits. Compared to a few big companies such as
Amazon, Facebook, Netflix, and Google that deploy code to production thousands
of times a day,2 the release frequency in other companies is much lower. The results
of a recent study3 show that most companies release changes between once per week
and once per month. One of the reasons for lower performances is the fact that many
organizations invest in new tools without putting enough effort into establishing a
new culture within teams [137]. Instead, CI implies a cultural shift that involves
several challenges [45]: (i) debugging build failures is not straightforward as they
happen on a remote server with limited access; (ii) waiting for the results of long
builds threatens developer productivity; (iii) automating manual steps requires
dedicated personnel; (iv) the size of each coding task has to be small enough to
enable developers to integrate frequently their code contributions.

To correctly apply CI and fully benefit from it, developers need to overcome these
challenges with the definition of a new development workflow that supports them
in following CI principles [25]. For example, developers should establish policies to
timely merge feature branches into the mainline, make a runnable version of the
code always available, and automate all testing activities. Although the extensive
list of CI principles has been thoroughly described in several books [25, 47] and
has gained wide acceptance since its publication, following those principles is not
easy and developers deviate from them generating anti-patterns. CI anti-patterns
are temporary and ineffective solutions to recurrent problems.

1https://www.infoq.com/articles/infoq-reader-survey-2019-results/
2https://dzone.com/articles/release-frequency-a-need-for-speed
3https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

https://www.infoq.com/articles/infoq-reader-survey-2019-results/
https://dzone.com/articles/release-frequency-a-need-for-speed
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
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Figure 1.1: A CI-based development workflow

1.1 The Problem of Anti-patterns

The core of a CI-based development workflow (Figure 1.1) is the build server that
constantly checks the shared repository for newly committed changes. Examples of
build servers are TravisCI,4 Jenkins,5 and GitLab.6 When a new change introduced
by developers is detected (i.e., a new revision is generated), the build server triggers
a new build, which is a pipeline consisting of several build steps (e.g., compilation,
testing) that verify the absence of issues (e.g., compilation errors, bugs) in the
new code. Based on the type and severity of the identified issues, a build can
succeed (build success) or fail (build failure). The outcome of a build success is
a new software version that can later be deployed. A build log containing the
output of all the actions performed during build steps is produced at the end of the
build. Developers can configure steps and define their own build pipeline through
a configuration file that is provided by the build server (e.g., .gitlab-ci.yml in
case of GitLab, travis.yml in case of TravisCI). Build servers need to execute
specialized build tools to perform build steps. Differently from build servers, the
choice of build tools depends on the programming language used in the project.
Examples of build tools are Maven7 and Gradle8 for Java projects. The execution

4https://travis-ci.org/ 5https://www.jenkins.io/ 6https://about.gitlab.com/
7https://maven.apache.org/ 8https://gradle.org/

https://travis-ci.org/
https://www.jenkins.io/
https://about.gitlab.com/
https://maven.apache.org/
https://gradle.org/
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of some build steps can be offloaded on external services that do the work and
communicate the results to the build server. This is the case of Continuous Code
Quality (CCQ) services like SonarCloud9 that check source code for code quality
issues. Finally, developers can implement a monitoring layer (built with tools like
Splunk10) that analyze build outputs such as revisions and build logs with the goal
of continuously assessing the performance of the pipeline, verifying its velocity and
stability.

Developers can sometimes manipulate or misuse the pipeline with modalities
that, consciously or not, violate principles and generate anti-patterns. Unprincipled
choices are typically well-intended reactions to immediate, critical issues that would,
for example, delay a release. However, these choices have negative mid/long-term
effects and are therefore considered harmful for a project, because more effort is
needed to fix issues afterward. In this way, the expected advantages of CI such as
improving the reliability and quality of released changes can get compromised. In
the following, we illustrate a few exemplar situations where developers generate
anti-patterns and describe their consequences.

Skipping Tests or Code Quality Checks Delaying a release is typically not
possible because it can cause the termination of a contract already agreed with
the client. It might happen that one or more tests are failing or that the number
of vulnerabilities exceeds the threshold shortly before the due date of the next
release. In such cases, developers can decide to skip tests or ignore code quality
warnings. This has the immediate advantage of letting developers release on time.
Nevertheless, a future bug in production can cause a more serious loss of money.

Long-Running Branches Developers prefer to work independently on the assigned
features and share code with the other teammates only when the implementation
is completed [3]. Developers create feature branches and work on their features
without disturbances from other teammates. However, some features require
several days or even weeks to be completed. Thus, if they adopt feature branching,
developers might end up committing a big amount of changes at once after some
time. This choice will provoke severe merge conflicts that are hard to solve.

9https://sonarcloud.io/ 10https://www.splunk.com/

https://sonarcloud.io/
https://www.splunk.com/
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Allowing Builds to Fail Build failures are usually very time consuming to
solve [50]. Developers need to inspect long and verbose build logs to under-
stand the root causes of build failures. They also happen on a remote build server
that developers do not fully control and where debugging capabilities are limited.
Given the difficulty of troubleshooting build failures, developers can decide to allow
builds to fail so that their productivity is not hindered by possible errors. In this
way, all the effort of defining a build infrastructure is wasted and defects might
escape unnoticed.

These examples show that anti-patterns do not really solve problems but they just
postpone their resolution. The longer anti-patterns “survive”, the more problems,
such as bugs, accumulate and become more difficult to solve. Prompt identification
and removal of anti-patterns are crucial to achieve the expected benefits of CI.

1.2 Thesis Statement and Research Questions
The presence of anti-patterns has a disruptive effect on the CI practice and its
goals. We want to support developers in removing the causes of anti-patterns from
their development workflows and we state our thesis as follows:

The empirical characterization of anti-patterns that exist in the practice of CI
allows to implement solutions that reinforce a principle-driven software development
through a better understanding of failures and the awareness of bad practices.

As depicted in Figure 1.2, we formulated several research questions to investigate
our thesis. Each of them is described in the following sections and corresponds to a
chapter of this dissertation (see Section 1.12 for more details about its structure).

We started our work investigating and characterizing the problem of anti-
patterns by answering the following research questions:

RQ1 How do developers fail to get CI done right?

RQ1.1 Do developers deviate from CI principles?

RQ1.2 What are the anti-patterns encountered by developers in practice?

Developers can deviate from CI principles generating anti-patterns [25]. How-
ever, while the phenomenon of anti-patterns was hypothesized in several
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On the Nature of Anti-patterns in CI (RQ1)

Investigating the existence of anti-patterns (Chapter 2)

Problem: CI anti-patterns exist and have several causes

Poor knowledge 
of CI basics

Complex failure 
inspection

Configuration 
smells

Wrong usage of 
a CI process

RQ1.1

Summarization of 
Build Failures (RQ2)
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Bart (Chapter 5)RQ2.2

1 2 3 4

CD-Linter 
(Chapter 6)RQ3

CI-Odor
(Chapter 7)RQ4

Figure 1.2: Overview of the Research Questions

books [25, 47], none had assessed their existence in practice. To gain initial
empirical evidence of the presence of anti-patterns, we conducted a prelimi-
nary study on the violation of core CI principles (RQ1.1). Specifically, we
studied the extent to which the principle of continuous inspection is violated
investigating how frequently developers that adopt CI automatically check
for code quality in their projects. Because of the initial results revealing
the existence of deviations from principles, we decided to perform a broader
study on the phenomenon of CI anti-patterns (RQ1.2). We derived a catalog

11https://stackoverflow.com/

https://stackoverflow.com/
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of existing CI anti-patterns conducting semi-structured interviews with prac-
titioners and manually analyzing StackOverflow11 posts that were discussing
issues related to the adoption of CI.

From the interpretation of bad practices encountered by developers in practice,
we identified four main causes for the presence of anti-patterns (as illustrated in
Figure 1.2). The poor knowledge of prerequisites for implementing a CI work-
flow 1 , such as the adoption of a dependency management system, can only
be addressed with better coaching in the CI discipline and is out-of-scope of this
dissertation. Novel approaches for eliminating the other causes, which are instead
provoked by limitations of current tools and lack of support when configuring and
using CI, are needed. RQ2 investigates the difficulty of understanding build logs
during failures 2 . RQ3 and RQ4 study the presence of bad configurations in
build pipelines 3 and the wrong usage of a CI process 4 , respectively. While
answering research questions, we built approaches that empower developers to
avoid anti-patterns.

RQ2 How can we reduce delays caused by the difficulty of inspecting build failure
logs?

RQ2.1 What are the most common causes of build failures?

RQ2.2 How can we summarize build failure logs?

CI principles advocate a prompt resolution of any stop in the pipeline [25].
A build failure stops the line because developers cannot successfully check in
new changes until the build is fixed. Although build failures are important to
detect issues early in the development process, troubleshooting them is often
a difficult task because developers need to inspect logs that mostly contain
information that is irrelevant to the failure. To improve the understanding of
build failures and avoid long build resolution sessions, we built an approach for
summarizing build failure logs. We conducted several iterations of card sorting
applied to errors present in build logs of open-source and closed-source projects
and were able to derive a taxonomy of build failures based on their causes in
the logs (RQ2.1). We then developed a tool that produces summaries for the
most common build failure types. We evaluated its effectiveness through a
controlled experiment and its limitations via a survey (RQ2.2).
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RQ3 How can we warn developers about improper configurations of a build
pipeline?

Some anti-patterns occur when developers define and maintain a build pipeline,
which are not easy tasks [45]. Build servers typically offer online linters that
can be used to validate configuration files. However, those tools only spot
basic syntactic errors such as the use of reserved keywords when naming build
steps. To identify violations of CI principles in the form of configuration
smells that developer should remove, we developed a semantic linter for
CI/CD configuration files. We evaluated our tool opening issues in open-
source projects and monitoring the acceptance of our bug reports and the
removal of reported smells.

RQ4 How can we detect the wrong usage of a build pipeline?

Anti-patterns can also slowly creep into a project over time and provoke
CI decay. For example, to deliver a new feature faster, one might consider
skipping failing tests that currently stop the line. While it gives an immediate
advantage, this choice might result in a more serious delay caused by a bug in
production. To increase the awareness about CI decay caused by anti-patterns
and help developers react to them, we built a monitoring tool that leverages
information from the repository and the build history to identify the presence
of bad practices over time. We surveyed developers to identify a good set
of detectors and received feedback on our idea. We then evaluated our tool
sending developers reports produced for open-source projects.

1.3 RQ1: On the Nature of Anti-patterns in CI

In his landmark work about CI [25], Duvall outlines best practices but also warns
developers against the danger of introducing anti-patterns. Duvall emphasizes
that CI aims at “improving software quality and reducing risks”. A fundamental
principle that developers should follow to accomplish this mission is continuous
inspection, also known as Continuous Code Quality (CCQ), which includes running
automated tests and performing code quality analyses at every committed change.
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1.3.1 RQ1.1: Investigating the Existence of Anti-patterns

We started investigating the existence of CI anti-patterns in development workflows
by studying the adoption of CCQ.

Research Methodology We considered 148,734 builds of 119 Java projects that
were produced over 5 years of development to study the current adoption of CCQ.
We selected those projects that were both using TravisCI as the build server and
SonarCloud as the code quality analyzer. For each build, we collected build id,
message and id of the triggering commit, branch’s name, build status, starting and
ending date. If the build was inspected on SonarCloud, we also marked the build
as checked. We devised several indicators to assess the application of CCQ based
on the extracted features. We measured the Code Quality Checking Rate (CQCR),
the Elapsed Time and Frame between Checks (ETC and EFC), and the Percentage
of Checked Branches (CB).

Results When investigating the adoption of CCQ, we found that only 11% of
the builds are qualitatively checked. Developers typically perform a code quality
inspection after 18 builds, and, most likely at the end of a sprint. Furthermore,
only 36% of the branches are checked for the presence of code quality issues. These
results show that CCQ is not applied in practice. The existence of such a major
deviation from CI principles prompted us to perform a second and broader study
to derive a catalog of CI anti-patterns.

1.3.2 RQ1.2: Characterizing Anti-patterns

Based on the previous findings revealing the existence of deviations from core
principles, we decided to conduct a broader study aiming at characterizing the
anti-patterns encountered by developers in practice.

Research Methodology Although CI anti-patterns are mentioned in several
books [25, 47] and even catalogs [27] exist, previous works did not study which
anti-patterns are relevant and occur in practice. We empirically derived a catalog of
existent anti-patterns conducting semi-structured interviews with 13 practitioners
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that use or manage the CI pipelines of 6 medium/large companies and manually
analyzing over 2,300 StackOverflow posts where developers discuss issues related
to the adoption of CI. After the inception phase that we used to increase our
knowledge about CI anti-patterns by inspecting existing resources [25, 26, 27], we
interviewed practitioners and extracted from the transcriptions those sentences
that contain good and bad CI practices. We also extracted CI practices from the
selected StackOverflow posts. Specifically, two authors independently read the
posts and marked as relevant those posts where developers talk about CI practices.
The authors agreed on the relevance of 553 posts and assigned sentences from
both these posts and interviews to one or more categories of anti-patterns based
on the discussed violations. From the 182 anti-patterns that we recognized in
the sentences, we excluded, during several iterations, those that are not specific
to CI and are more bugs than misuses of a CI pipeline. We also merged similar
anti-patterns. To assess the completeness of our catalog, we classified a random
sample of CI-related posts from StackOverflow that were not analyzed before and
verified that the catalog was comprehensive enough to classify unseen discussions.
We measured the importance of each anti-pattern surveying 26 CI experts working
in 21 different companies and compared our catalog with the one previously defined
by Duvall [27].

Results The final version of the catalog includes 79 anti-patterns grouped into
7 categories or aspects of a CI process management and extends the Duvall’s
catalog [26] without including practices that are not specific to CI. Anti-patterns
occur when developers keep working on many branches for a long period or they do
not version the necessary configurations (Repository category). The improper choice
of hardware and software components can make the build slow and unreproducible
(Infrastructure Choices category). A wrong definition of build steps, the way steps
are scheduled in the build process, and the complexity of build logs cause Build
Process Organization anti-patterns. Duplications and environment-specific build
steps are examples of bad practices that decrease Build Maintainability. Other
anti-patterns concern the inadequacy of testing and code inspection strategies
(Quality Assurance category), the inefficient preparation for release (Delivery Process
category), and the lack of a DevOps culture within teams (Culture category).
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To better interpret the results of the research question, the author of this
dissertation performed an open card sorting of the derived anti-patterns and
categorized them based on their causes. The produced classification was also
reviewed by a different researcher (while he was working in a software company
that adopts CI) to have an external opinion about the validity of the identified
causes.12 Four main causes of anti-patterns were found:

• Poor knowledge of the fundamentals of CI. Anti-patterns, such as missing use
of a dependency management system and lack of automated testing, result
from a superficial understanding of the prerequisites for doing CI.

• Difficulty of understanding build failure logs. Because of the complexity of
build failure logs, developers are typically slow in repairing build failures.
The build stays broken for long periods of time preventing developers from
checking out functioning code.

• Configuration smells in build pipelines. Bad configurations of the build
pipeline cause anti-patterns. For example, developers can configure build
steps that are triggered manually or allow some of them to fail. These settings
threaten the effectiveness of build pipelines.

• Wrong usage of a build pipeline. A well-configured build pipeline can be
wrongly used generating anti-patterns. Developers do not commit often
causing severe merge conflicts or remove failing tests instead of fixing their
underlying root causes that lead to incidents in production.

While better coaching in CI is needed for the former, developers require better
support to recognize and avoid the other causes of anti-patterns.

Developers deviate from core CI principles such as the continuous inspec-
tion of code. We built a catalog featuring 79 anti-patterns that regard
several aspects of the CI process and interpreted their causes.

Answer to RQ1

12https://doi.org/10.5281/zenodo.4446239

https://doi.org/10.5281/zenodo.4446239
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1.4 RQ2: Simplifying the Inspection of Build Failure
Logs

Troubleshooting a CI build failure is the most important barrier that developers
face when approaching to CI [45]. They cannot easily debug build failures setting
breakpoints to investigate a program’s state right before a crash, as the failures
happen on the CI server that developers do not fully control. To understand the
root causes of build failures developers inspect build logs, which contain all the
actions performed by tools executed during the build (see Figure 1.1). Because of
their length and verbosity, developers are slow in extracting the information that is
relevant to formulate a fix. Long build debugging sessions cause stops in the build
pipeline, preventing developers from checking out functioning code.

1.4.1 RQ2.1: Categorizing Build Failures

As the first step towards more understandable build failures, we built an approach
that automatically classifies build failures according to their root causes.

Research Methodology To build a comprehensive taxonomy, we studied build
failures occurring both in industrial and open-source contexts. Specifically, we
investigated Maven build failures in 418 projects from ING,13 which is a large
financial organization located in The Netherlands, and in 349 open-source projects
from the TravisTorrent dataset [11]. We manually inspected the most popular
error messages contained in 34,182 build logs (both from ING and TravisTorrent)
and extracted those keywords (e.g., the failed build step, which is called goal in
Maven) that better describe the type of failure (e.g., a testing failure). Two of the
authors grouped keywords into categories and other two reviewed the produced
categorization. The respective reviews were discussed among the authors that, after
several iterations, reached a consensus. The resulting taxonomy was then used to
assign all previously collected build failure logs to the corresponding categories
based on matched keywords. A random and statistically significant sample of
classified failures per category was inspected by two authors to determine the

13https://www.ing.nl/

https://www.ing.nl/
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validity of the produced classification. If changes to the taxonomy were needed, all
build failure logs were re-classified and a new sample was validated. This process
was iterated until the taxonomy became stable. We used the final version of the
taxonomy to measure and compare the frequency of build failure types in industrial
and open-source contexts.

Results The final version of the taxonomy contains 171 keywords grouped into
20 categories. We measured their frequency both in ING’s and TravisTorrent’s
projects. If we exclude failure types corresponding to steps that are not scheduled
in a typical build process (i.e., preparation for a new release and support), and
those (i.e., Deployment) that can include other failure types, Compilation failures
(due to errors while compiling production and test code), Testing failures (occurring
while performing unit, integration, and non-functional testing activities), Code
Analysis failures (caused by unmet code-quality criteria), and Dependencies failures
(when required libraries are missing) are the most frequent types in both industrial
and open-source context. The occurrences of other types are negligible.

1.4.2 RQ2.2: Build Failure Summarization

Starting from the previously defined taxonomy, we devised a summarization tech-
nique that provides developers with summaries for common build failure types.

Research Methodology Bart (that stands for Build Abstraction and Recovery
Tool) is an approach for summarizing Maven build failures and ease their com-
prehension. We decided to focus on the most common build failure types when
implementing Bart, which has been released as a plugin for Jenkins. It parses build
logs and constructs a meta-model that only contains information that is relevant
to a failure (e.g., failed build steps and their execution lines). Such a meta-model
is used to provide an overview of the modules that failed, determine the failure
type (based on the previously defined taxonomy) and, finally, produce summaries
for common failure types. Summaries are build-failure-type specific but they have
the same structure including hints about the location of errors causing failures
(e.g., name of the class and line number, name of the dependency) and its reasons
(e.g., an abstract class is instantiated, a dependency is missing). When similar
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failures are discussed on StackOverflow, Bart also provides solution hints, which
are links to relevant StackOverflow posts that can guide the resolution process. We
conducted a controlled experiment with 17 developers to evaluate Bart’s capability
to improve the understandability of build failures and accelerate their resolution
process. We injected bugs in three well-known software systems written in Java
and built with Maven to generate instances of build failure types supported by
our tool. We then used Bart to generate summaries for these build failures and
measured the performances of our participants in fixing build failures with and
without summaries. We also asked our participants to rate the understandability
of summaries compared to logs and the usefulness of solution hints. Given the
divergent opinions on the applicability of solution hints, we conducted a survey
among developers on how they react to build failures and what types they find
difficult to solve. We obtained 101 valid responses. Two authors analyzed the
received open answers through a multi-step open-coding approach [111] and derive
resolution workflows for each build failure type.

Results The results of our controlled experiment show that Bart improves a
lot the understandability of the most common build failure types and developers
are faster in troubleshooting build failures. The resolution time is reduced by
23% when solving Testing failures, 20% when repairing Compilation failures, 43%
when fixing missing Dependencies, and 62% when dealing with Code Analysis
failures. However, the results also show that an optional part of our summaries
that consists of solution hints (i.e., links to relevant StackOverflow discussions)
is not always useful. While they seem to be helpful for some failure categories
(e.g., compilation and code analysis), solution hints are not so valuable in case of
dependency-related failures and simply do not work for testing. Comparing the
resolution workflows obtained by analyzing the results of our survey, we found that
build failures are rarely solved in a collaborative effort and developers typically do
not search for similar solutions on the Internet. Apart from Testing failures that
require also to be reproduced and debugged locally, developers mostly rely on the
sole build log to define a fix strategy. For this reason solution hints, especially in
case of testing failures that are project-specific, are not needed. Build logs contain
enough information to fix a failure and, reducing their complexity, we are able to
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speed up the resolution process. The results of our survey confirm the difficulty of
solving common types such as testing and dependencies failures but also reveal the
complexity of environmental failures (i.e., failures that are typically not expected
within a standard application development lifecycle, such as infrastructure failures).

Build failures are mainly caused by compilation errors, failing tests, miss-
ing dependencies, and poor code quality. We built an approach for auto-
matically detecting and summarizing those recurrent failure types with
the indication of reasons and error locations. Our build summaries in-
creases the understandability of build failure logs and let developers solve
build failures faster avoiding severe stops of the build pipeline.

Answer to RQ2

1.5 RQ3: Detecting Configuration Smells that Af-
fect Build Pipelines

Setting up a build pipeline is not trivial [45]. Because of the great flexibility offered
by CI servers and the high competence required to configure them, developers
can easily make mistakes even when defining a simple workflow. For this reason,
developers validate their build configuration using the online linters that are directly
provided by CI tool vendors. The biggest limitation of these linters is that they
only spot syntactic errors, such as the use of reserved keywords when naming
build steps, while previous researchers have shown that a semantic linting is also
needed for build configurations. For example, linters should also detect misuses
of configuration features [34], like executing commands in unsuitable build steps,
and security weaknesses [94], such as the use of hard-coded passwords. Besides
generating misuses and security smells, developers can also, consciously or not,
follow anti-patterns when configuring a build pipeline. Therefore, we decided
to implement CD-Linter, a novel semantic linter that warns developers against
Continuous Delivery (CD) smells, which are process-related violations of CD
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principles present in configuration files. CD is the practice that extends CI enabling
the automated deployment of a new software version in production. While our tool
is meant to scan build pipelines that also includes a deployment step, the current
version of CD-Linter mainly detects violations of CI principles, which are also
valid for CD. Despite being CI anti-patterns, we call those violations CD smells to
avoid generating confusion with future extensions of the tool. CD-Linter inspects
GitLab configuration files and detects four types of CD smells in Python projects
and in Java projects built with Maven. Our tool parses .gitlab-ci.yml files and
identifies cases where build steps are allowed to fail (Fake Success), manually
executed (Manual Execution), or set to rerun multiple times after a failure (Retry
Failure). Dependencies whose versions are not fully specified (Fuzzy Version) are
also reported as CD smells.

Research Methodology To validate our tool we conducted an empirical study
opening and monitoring issues in open-source projects hosted on GitLab.com. We
selected 5,312 starred projects that are not forks and contain a .gitlab-ci.yml

file in their repositories. We run CD-Linter against these projects and identified
a random sample of detected CD smells in a way to achieve a balanced set of
CD smells of each type and at most one CD smell per project owner. Out of the
resulting 168 CD smells, we discarded 23 that contain false positives and opened
145 issues. We have monitored the issues over a period of 6 months and used the
issue state (i.e., closed, open), the number of upvotes/downvotes, and the received
comments to classify each reaction. We also inspected the source code to see how
smells were removed. Based on the feedback to our tool received in the comments,
we produced a new version of CD-Linter and generated a new random sample from
the newest set of detected smells to be manually validated. We selected for each
project owner, one CD smell of each type, if detected. Since for Fuzzy Version we
have four sub-categories, we considered one of each sub-category, if present. Two
authors independently validated the resulting sample of 868 issues. We measured
the Cohen’s kappa inter-rater agreement [18] (k = 0.76, high agreement) and the
authors discussed and solved the disagreement cases. We computed the overall
precision based on the validated sample and the recall using another randomly
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selected sample of 100 projects. Finally, we measured the occurrences of CD smells
in the latest snapshot of the analyzed projects.

Results During the 6-month observation period, 74% of the active projects reacted
to our issues. Overall, 53% of the project maintainers reacted positively, with 9%
that confirmed the validity of the reported problem and 44% that fixed it. 32% of
the issues were rejected because the problem affected build steps that were not fully
integrated into the pipeline yet or that used predefined templates containing smells.
Other developers did not trust the output of an automated issue-reporting tool or
they considered the smell being not applicable in some cases (i.e., differently from
libraries, required tools should be always updated to the latest version). During
the manual validation, CD-Linter achieved a precision of 87% and a recall of 94%.
The identified false positives and negatives were caused by very specific cases,
such as the use of unconventional names for steps executed during deployment,
that can only be removed enabling developers to configure CD-Linter. From the
analysis of the occurrence of CD smells in the wild, we detected 2,874 instances
that affect 13% of the projects (and 14% of the owners). Fuzzy Version is the most
common smell and is present in 37.1% of the analyzed projects. We found that
longer configuration files (that potentially lead to more complex pipelines) are also
more prone to contain CD smells. 69.7% of the overall detected smells affect long
.gitlab-ci.yml files, with 50.9% of the Fuzzy Version problems, 88.2% of the Fake
Success smells, 86.4% of the Manual Execution incidents, and even 98.7% of the
Retry Failure instances.

A semantic linter can be used to warn developers against improper config-
urations that generate CI anti-patterns. Most of the developers confirmed
the validity of configuration smells detected by our linter and fixed them.
Our approach is accurate, scoring a precision of 87% and a recall of 94%.
Smells tend to affect longer configuration files, where a linter can be more
effective to spot hidden issues.

Answer to RQ3
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1.6 RQ4: Reporting the Wrong Usage of a Build
Pipeline

A well-defined build pipeline is only the prerequisite for a good CI practice. Devel-
opers still need to use the build pipeline correctly. They have to automate tasks,
such as testing and code quality assurance that in some organizations are performed
manually or only partially automated [45], and establish a branch-merging strategy
to avoid the disproportionate effort of integrating changes from long-lived feature
branches. Developers have also to be careful with adding dependencies and select-
ing tests not to raise the build time too much. Unfortunately, living up to those
principles while using a build pipeline is hard and several are the anti-patterns
that slowly creep into projects over time. To identify those anti-patterns, we
implemented CI-Odor, an automated detection and reporting tool that monitors
the usage of a build pipeline. Specifically, CI-Odor parses build logs of Java projects
built with Maven on TravisCI and inspects their repositories to compute CI-related
metrics, such as build durations, number of build failures on the release branch,
and date of the last commit on a given branch. Those metrics are then used by
detectors to spot the presence of anti-patterns.

Research Methodology We surveyed developers to identify a good set of detectors
to implement in our tool. Specifically, we asked developers to rate the relevance of
proposed detection strategies for several anti-patterns that were good candidates
based on their feasibility to be identified from the extractable metrics. Our
respondents had also the possibility to give us feedback on the detection strategies
in the open answers, which we analyzed through several sessions of open card
sorting [111]. We then refined strategies and developed the final set of detectors
in CI-Odor. We conducted a study on open-source software projects to assess the
accuracy and usefulness of our reporting tool, and to measure the occurrences of
detected anti-patterns over the history of real projects. We selected active Maven
projects built on TravisCI that were forked at least once and had more than 5
maintainers to ensure a certain community size. Among them, we only considered
36 projects whose development teams could be reached out through a public mailing
list or an available group channel. We sent to those teams the reports produced by
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CI-Odor for their projects. Finally, we also sent those reports to participants of
the previous survey that were interested in seeing the output of our tool.

Results Based on the analysis of 124 valid responses to our survey, we decided
to implement four detectors: Late Merging (i.e. branches are kept open for a
long time without being merged into the master branch), Slow Build (i.e., the
duration of some builds is significantly high), Broken Release Master (i.e., build
breaks occur on the master branch and are not timely fixed), and Skip Failed Test
(i.e., tests are skipped to repair build failures). Our respondents also confirmed
that developers are typically unaware of anti-patterns occurring when using CI
and that this causes CI decay (i.e., the goals of CI are not achieved). In the
next study, we analyzed the reactions of developers to the reports generated by
CI-Odor. According to 13 original developers, reports are generally useful and
anti-patterns are properly identified. Many developers (67%) expect a positive
effect of using our generated reports on their CI discipline. Even though they asked
for an increased configurability and more suggestions on possible fixes for detected
anti-patterns, 55% of the respondents were already willing to integrate CI-Odor in
their CI processes. Late Merging is the most frequent problem affecting 97% of
the projects and 67% of the analyzed branches. We detected at least one Broken
Release Branch instance in all projects while Slow Build was identified in half of
the projects and 27% of the overall builds. The least prominent anti-pattern is
Skip Failed Test, which occurs in 42% of the projects and 0.65% of the builds.

Build logs and repositories contain valuable information to identify those
anti-patterns that slowly creep into projects over time. Our tool leverages
these resources to detect the presence of anti-patterns, which occur very
frequently in the analyzed projects. Our reporting tool is perceived as
useful and developers want to integrate it into their monitoring layer.

Answer to RQ4



22 Chapter 1. Synopsis

1.7 Scope and Limitations
In this section, we describe the scope of this dissertation and its main limitations.

1.7.1 Scope

The focus of this dissertation was on understanding what anti-patterns occur in
the practice of CI and on effectively helping developers with the identification and
removal of their causes. The catalog of anti-patterns that we derived from the
analysis of StackOverflow posts and interviews with experts, was a step required
to build the foundation of this thesis. The catalog is general and valid for every
organization adopting CI, regardless of its domain and size. We identified common
causes of anti-patterns to better guide the definition of approaches that help
developers remove these causes. Our build summarization approach, which tackles
the problem of having long stops caused by build failures, is designed for build
servers that can be extended (for example, by means of plugins) to show our
summaries in the build overview. Our semantic linter identifies configuration smells
and can be used in organizations adopting build servers that can be configured
through configuration files. This is possible in the majority of build servers, which
are highly configurable and follow the infrastructure-as-code pattern [2]. Our
monitoring tool for anti-patterns caused by the wrong usage of a build pipeline can
be installed in those organizations that store build logs and repository information
for a certain period of time (without rewriting the recent history at least).

Potential for Industrial Adoption Figure 1.3 illustrates the enhanced version
of the basic development workflow shown in Figure 1.1. It contains the three
approaches developed in this dissertation for the identification and removal of
anti-pattern causes.

Developers have to avoid introducing configuration smells that provoke anti-
patterns. When developers define the build pipeline for the first time or when they
simply modify it, our linter 1 can be used to improve the effectiveness of the
other tools that only spot syntactic errors. For example, our linter can remind
developers to remove an anti-pattern that was temporarily added to avoid a build
failure. Nevertheless, build failures play an important role in the build verification
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Figure 1.3: The enhanced CI-based development workflow

process because they spot the presence of defects that otherwise will be released in
production. Build failures have to be solved in a short time to let other developers
check out functioning code. Instead of inspecting huge build logs, developers can
look at the build summaries produced by our tool 2 and understand the root
causes of a failure more quickly. Several organizations adopt monitoring tools
(e.g., Splunk) to measure throughput and stability of the released code over time.
A monitoring layer 3 can be extended by including our automated reporting
tool that assesses the quality of the development process in terms of anti-patterns
accumulated over time, which have to be fixed on par with other smells that lower
code quality. The generated report highlights the presence of worrisome trends
and lets developers take action against CI decay. While they do not enhance
directly the development workflow with new tools, the descriptions and examples
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of anti-patterns contained in our catalog can be consulted by developers to learn
about other important bad practices that are currently not detected by our tools.

1.7.2 Limitations

We present the main limitations of our dissertation. We motivate the reasons for
some choices and assumptions that might be perceived as limiting factors. We also
illustrate possible threats to validity, which will be discussed in the other chapters,
together with our mitigation strategies.

Focus on Specific Technologies and Languages Although our approaches can
be easily adapted and integrated into other build infrastructures, we chose a few
technologies and programming languages to support. The reason of our choices was
to maximize the number of projects that we could analyze and receive feedback
from. We mainly supported projects written in Java because this has been the
most popular language during recent years.14 If we consider the Java ecosystem,
Maven is still the most used build tool.15 Thus, we summarized logs generated by
Maven and detected anti-patterns in pom.xml files. As regards the build server, we
supported Jenkins, TravisCI, and GitLab for several reasons. We decided to build a
proof-of-concept implementation of our build summarization approach for Jenkins,
not only because it is easy to extend through plugins but also because Jenkins is
still the most popular build server.15 This enabled us to reach out to a bigger group
of candidates for our controlled experiment on build summaries. We implemented
our anti-pattern detectors for projects built on TravisCI and GitLab because those
are very popular solutions among open-source developers, which made it easier to
measure the presence of anti-patterns and communicate the results of our analysis.
Finally, we chose SonarCloud for its seamless integration with other collaborative
tools such as GitHub and the availability of past measurements, which made it
possible to perform a historical analysis of code quality measurements.

Representativeness of Participants in Our Studies The number of participants
in some of our studies is limited. The effort required to review a long catalog of

14https://www.tiobe.com/tiobe-index/
15https://www.jetbrains.com/lp/devecosystem-2020

https://www.tiobe.com/tiobe-index/
https://www.jetbrains.com/lp/devecosystem-2020
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anti-patterns or to participate in a 45-minute interview made it difficult to recruit
a high number of participants. In the case of controlled experiments that need
to be held in person, recruiting was even more problematic. Another source of
difficulties was the availability of open-source developers to be contacted. Because
we did not want to send unsolicited emails, we only targeted those projects that
provide an official way (e.g., a public mailing list or group channel) to get in
contact with their developers. Despite the impossibility of reaching a big number
of participants based on the above-mentioned reasons, we always strove to build a
diverse sample, including developers of different expertise levels and belonging to
various organizational domains and sizes.

Assumptions about the Development Workflow We made several assumptions
about the development workflow. When investigating the frequency of code quality
checks, we assumed that projects use only one CCQ service to assess the overall
code quality. Despite being unlikely based on the analyzed data, it might be that
developers use multiple services with different settings and modalities of use. When
assessing the usefulness of build summaries, we assumed that developers typically
inspect raw build logs to understand a build failure. Our assumption was later
confirmed by the analysis of build resolution workflows, where we actually saw that
developers mostly rely on the sole build log to define a fix strategy.

Confirmation Bias in Surveys and Interviews We conducted interviews and
surveys. Confirmation bias, which is the tendency of humans to confirm their
preexisting beliefs, can affect both the construction of surveys or interview guidelines
and the interpretation of the results. We tried to mitigate this threat by conducting
pilot runs with other researchers to canvass them about the quality and neutrality
of the questions. Instead of asking yes-or-no questions, we typically measured
the perception of developers about our approaches through Likert scales [62] and
employed as many open-ended questions as we could. When analyzing the results
of open-ended questions, several people were involved in multiple sessions of card
sorting.
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Selection of Anti-patterns We did not implement detectors for all anti-patterns
encountered by developers in practice. We rather focused on a subset of them
based on two main criteria. One was the possibility to detect anti-patterns using
information made available by open-source projects (e.g., configuration files, build
logs, and repository). The other was the validity of our detection strategies for
anti-patterns. While we cannot claim that we built the most relevant detectors, our
survey among developers has shown the relevance of our selection. Furthermore, we
used the feedback that we received from developers to further refine the detection
strategies.

1.8 Scientific Implications

My thesis has both implications for practitioners interested in removing CI anti-
patterns from their development workflows and researchers that want to improve
the current practice of CI.

CI Is a Culture, not a Tool One of the main causes of anti-patterns is the missing
adherence to fundamentals of CI. For example, developers do not automate their
testing activities and they do not have a rollback strategy in place. Organizations
seem to be mostly focused on introducing the newest build servers and integrate
the most popular tools into their pipeline. However, tools are only means to
assist developers in establishing a CI process. A build server cannot ensure that
every developer commits changes at least once a day or that a build failure
gets immediately fixed. Organizations need to invest more resources in coaching
developers in CI principles to help them adopt CI correctly and adapt their
development style to the practices that CI requires.

Summaries Enhance the Build Failure Overview In the presence of failures,
most of the build servers display information about the commit that provoked
the failure and the build duration. Developers have to inspect huge build logs to
understand the root causes of a failure. Build summaries have the advantage of
considering only those sections of the build logs that are relevant to the failure. In
this way, they improve the understandability of build failures and reduce the time
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needed to fix them. We argue that build servers should include our summaries as a
supplement for build logs in the failure overview.

Semantic Linters as “Mentors” when Configuring Build Pipelines Semantic
linters, which go beyond syntactic errors and highlight the effects of a configuration
choice, can efficiently support developers when defining their build pipelines. For
example, our linter warns developers against configurations that violate CI principles.
Linters can mentor developers that approach the configuration of a build pipeline
for the first time and have the advantage of being lightweight. They are fast and
do not require special hardware (i.e., they can be run locally). Given that improper
configurations mostly affect long configuration files, linters are even more needed
to spot those issues that hide in the lines.

Monitor CI Processes to Prevent Decay We saw that developers typically lack
awareness of anti-patterns that emerge over time and that lead to CI decay in the
long term. Monitoring tools (e.g., Splunk), that are available on the market, assess
only the performance of a build pipeline in terms of throughput and stability. We
argue that those tools should be set to monitor also for the presence of anti-patterns
such as aged branches. In addition to that, developers should adopt well-defined
notification mechanisms (e.g., build failure notifications) that avoid following bad
practices such as postponing the resolution of build failures.

Automated Reporting Tools Need to Earn Trust First Nowadays, there is an
increasing use of software bots to assist developers during various phases of the
development process [60]. For example, software bots close abandoned issues after
a period of inactivity and alert to the presence of vulnerabilities in the code. In
our evaluations, we opened automatically issues containing configurations smells
and sent automatically generated reports to developers. Despite the presence of
a real problem, several developers first closed issues or ignored our reports and
they only showed interest when we started a conversation with them. Based on our
experience, automated reporting tools should demonstrate the presence of humans
behind them, otherwise, developers are less willing to accept their suggestions
regardless of their relevance.
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Do not Rely Blindly on Default Configurations As well-known static analysis
tools, also our anti-pattern detectors generate false positives or are intrinsically
imprecise. Despite performing very well both in terms of precision and recall, there
are cases where our tools report anti-patterns that are not valid in a specific context
(e.g., the manual execution of a deploy job does not violate principles). Those
inaccuracies can be removed only by enabling developers to configure our tool
and define exclusion criteria for our detectors. The default configuration and the
use of predefined thresholds only capture the common case. It is important that
developers configure tools to better adapt them to their contextual needs.

1.9 Opportunities and Future Work

This section describes possible extensions of our dissertation. Future works should
address its limitations and broaden the scope.

Suggesting Fixes for Anti-patterns Fixing a detected anti-pattern is typically
straightforward. Developers just have to unfollow the incorrect behavior. For
example, they are required to better define dependencies with missing versions or
merge a feature branch when it is kept open for a long period. However, in some
cases, the solution is not immediate. When the build duration raises to dangerous
levels, developers cannot simply make the build faster removing steps or part of
the code. They need to deeply investigate bottlenecks and their causes. Future
research should study how to help developers when removing an anti-pattern is not
trivial.

Detecting more Anti-patterns Our approaches do not detect all anti-patterns
that developers can encounter in practice. Future works should alert developers
when they do not version all the necessary configurations and when a proper
notification mechanism is missing. Duplicated build steps should be avoided
because they make builds unnecessary slow and lower the build maintainability. We
saw that Fuzzy Version is perceived as a bad configuration only when it involves
libraries and dependencies. According to the received feedback, tools, that are
executed during build steps, do not need a fully-specified version. They have to
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be always updated to the latest version that can contain security improvements.
However, having automatic updates threaten the build reproducibility. More
research is needed to investigate what is a good trade-off between security and
reproducibility.

Enhancing the Debugging of Build Failures Developers typically rely on the
sole build logs to solve failures. However, we saw that, especially in the case of
testing failures, developers also reproduce the failure and debug it. Unfortunately,
this is always not possible because some builds require high-performing machines
and are not meant to be executed locally. Researchers should study innovative
approaches that bridge the gap between local (e.g., the IDE) and remote (e.g.,
build server) environments. Furthermore, the recent history of build fixes can help
developers with identifying the root causes of build failures.

Tackling Infrastructure-related Build Failures Infrastructure-related build fail-
ures, such as the ones due to unreachable machines, are not expected in the
standard development workflow. They are caused by weaknesses of the adopted
build infrastructure rather than by defects introduced by developers. Future work
should investigate how to extend our approach to effectively summarize also those
failures. For example, new hint generators can leverage information from different
nodes (e.g., servers) of the infrastructure to provide developers with the location of
failures. Researchers should also verify the relation between infrastructure failures
and bad configurations.

Using Contextual Information to Calibrate Thresholds We developed anti-
pattern detectors that employ default thresholds. However, these thresholds are not
applicable to all contexts and have to be adjusted based on the needs. Contextual
information from different sources (e.g., bug trackers, task management systems,
communication platforms) can be used to automatically calibrate thresholds.
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1.10 Related Work

The works that are mainly related to this dissertation can be categorized into
research papers that (i) investigate the adoption of CI and the difficulty of applying
it, (ii) study the phenomenon of build failures and their solutions, (iii) identify
defective infrastructure as code scripts. More details about the works that are
closely related to the studies included in this dissertation will be described in the
corresponding chapters.

Continuous Integration: Benefits, Anti-patterns, and Barriers Several re-
searchers have studied the adoption of CI in open-source and industrial contexts.
Hilton et al. [46] found that popular open-source projects are more likely to in-
stall build servers and CI is used because it helps developers to catch bugs early
increasing the release frequency. Those expected benefits have been investigated
by Vasilescu et al. [124]. CI not only helps developers to discover more bugs but
also increases developer productivity making teams more effective at merging pull
requests. The benefits originally formulated in books [25, 47] are then proven in
practice. This strengthened our motivation for studying ways to better enforce a
correct CI adoption. Despite its clear definition, Staahl and Bosch [112] found that
industrial organizations have different interpretations of the CI practice, which
might lead to very specific anti-patterns. Our goal was to build a catalog of
anti-patterns that was general, so we made sure to involve companies varying in
size and domain to improve the reliability of our results.

We defined anti-patterns as deviations from CI principles, which are instead
those practices that developers should adopt to obtain expected benefits. CI
principles have been defined in several books that describe not only CI [25] but
also CD [47], and have been later collected in catalogs [26, 27]. For each principle,
those books identified several risks that can derive from the incorrect application
of CI. For example, Duvall et al. [25] advocated the need for a fully automated
build process and a centralized dependency management system highlighting the
possible risks of not being able to create deployable software or to solve transitive-
dependencies-related issues. Humble and Farley [47] also provided suggestions on
how to construct a build pipeline that enforces best practices. Differently from
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these works, we empirically derived anti-patterns and validated how many bad
practices, that were only hypothesized before, are encountered in practice.

One reason for introducing anti-patterns is the difficulty of living up to CI
principles. Hilton et al. [45] investigated the barriers that developers encounter
when adopting CI. Developers struggle with repairing build failures that require the
inspection of complex logs and that happen on remote machines where developers
have limited debugging capabilities. Furthermore, the build duration tends to
increase as long as a project evolves. Long build durations as well as long build
resolution activities reduce developer productivity. Introducing a build pipeline and
automating an established development process are not trivial because organizations
need to invest in dedicated personnel that not only set up a build server but also
coach people in CI principles. The burden of adopting CI correctly is a strong
motivation for supporting developers to remove the causes of anti-patterns that
emerge because of the aforementioned reasons.

The Causes of Build Failures and Approaches for Their Automated Fix Pre-
vious works have investigated the causes of build failures. Miller [75] studied build
failures occurring at Microsoft and found that are mainly due to poor code quality,
testing failures, and compilation errors. Those results are also valid in open-source
projects where build fails mostly because of failed test cases [10, 100]. Researchers
have also produced taxonomies focusing on specific types of build failures, i.e.,
compilation [107] and code quality [142] related failures. In our dissertation, we
propose a broad taxonomy considering all types of build failures that we could
identify in the open-source and industrial projects that we studied. The frequency
of build failure types that we measured in our dataset confirms the results obtained
by the previous researchers. There is a cluster of build failures caused by the
instability of build environments that is becoming more frequent [35]. We did focus
only on build failures that are related to development activities, but we plan to
extend our taxonomy to cover also those failures that were perceived as even more
difficult to solve in our study on build resolution workflows.

Repairing build failures is a time-consuming task. Kerzazi et al. [50] observed
a high percentage of build failures, whose resolution costs more than 2,000 man-
hours over a 6-month period. On average, each failure resolution requires one
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hour. Because of the effort required to fix them, several researchers have proposed
approaches for the automated resolution of build failures. Macho et al. [66]
developed an approach that automatically repairs build failures due to some types
of dependency-related issues. Urli et al. [120] implemented a bot that repairs build
failures caused by failing tests. Hassan and Wang [43] leveraged patterns extracted
from previous build fixes to generate patches that repair those failures that are
caused by changes to the build configuration file. Our approach for build failure
summarization is complementary to automated fix approaches. Most of the failures
cannot be solved automatically, so we try to empower the developer by improving
build log understandability.

Bad Configurations in Infrastructure as Code Scripts Previous researchers
have investigated the nature of bad configurations in infrastructure as code (IaC)
scripts. Sharma et al. [108] derived a catalog of configuration smells that assess
the quality of IaC scripts starting from best practices that are traditionally used to
improve source code quality. Other researchers studied configuration smells [92],
development anti-patterns [93], and source code properties [96] that are associated
with defective IaC scripts, which might cause severe system outages.

Several approaches have been developed to automatically detect various kinds
of bad configurations. Gallaba and McIntosh [34] developed a tool that detects
and eliminates misuses such as the presence of unused properties and bypassed
security checks. Rahman et al. [94] implemented a tool that automatically identifies
seven types of security smells that can generate security vulnerabilities in the
infrastructure. We share with these existing works the focus on detecting bad
configurations. However, our goal is different. We want to detect those configuration
smells that cause violations of CI principles.

1.11 Summary and Contributions

Developers can violate the principles of CI introducing anti-patterns that quickly
solve urgent problems such as meeting the due date of a release. However, if not
properly identified and removed, anti-patterns threaten the long-term goal of CI,
which is delivering reliable and better software faster. We started this dissertation
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investigating the existence of anti-patterns in practice. We built a catalog of
anti-patterns encountered by developers and identified their main causes. Apart
from the poor knowledge of CI fundamentals, such as the use of automated tests
and a dependency management system, that can be addressed with better coaching
in CI, developers require proper assistance to remove anti-patterns that are caused
by the complexity of build failure logs and that emerge when defining or using a
build pipeline. To assist developers, we built (i) an approach for summarizing build
failure logs that increases their understandability and reduce the time spent on
solving build failures, (ii) a semantic linter that detects the presence of anti-patterns
in configuration files, and (iii) a monitoring tool that identifies anti-patterns that
slowly creep into projects over time.

In summary, we made the following contributions:

• A catalog of CI anti-patterns encountered by developers in practice;

• A taxonomy of build failures that occur in open-source and industrial projects;

• An approach for summarizing build failure logs that increases their under-
standability;

• An approach for identifying anti-patterns in build configuration files;

• An approach for detecting anti-patterns that occur over time analyzing build
logs and repository information.

1.12 Outline
The next chapters of this dissertation contain research works that were published
at international peer-reviewed conferences and journals. As shown in Figure 1.4,
those works answer the research questions previously illustrated in Section 1.2.

Chapter 2 investigates the existence of deviations from a core principle of CI,
which is continuous inspection also known as continuous code quality (CCQ). This
work was done in collaboration with my former colleague Fabio Palomba, Alberto
Bacchelli, and my supervisor Harald C. Gall. I contributed to the study design



34 Chapter 1. Synopsis

Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, Harald C. Gall.
Continuous Code Quality: Are We (Really) Doing That?.
In Proceedings of the 33rd IEEE/ACM International Conference on Automated 
Software Engineering, New Ideas Paper (ASE), 2018.

Chapter 2

RQ1

Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora, 
Harald C. Gall, Massimiliano Di Penta.
An Empirical Characterization of Bad Practices in Continuous Integration.
In Springer Empirical Software Engineering (EMSE), 2020.

Chapter 3

Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, 
Philipp Leitner, Andy Zaidman, Massimiliano Di Penta, Sebastiano Panichella.
A Tale of CI Build Failures: an Open Source and a Financial Organisation 
Perspective.
In Proceedings of the 33rd IEEE International Conference on Software 
Maintenance and Evolution, Technical Research Paper (ICSME), 2017.

Chapter 4

Carmine Vassallo, Sebastian Proksch, Timothy Zemp, Harald C. Gall.
Every Build You Break: Developer-Oriented Assistance for Build Failure 
Resolution.
In Springer Empirical Software Engineering (EMSE), 2020.

Chapter 5

Carmine Vassallo, Sebastian Proksch, Harald C. Gall, Massimiliano Di Penta.
Automated Reporting of Anti-Patterns and Decay in Continuous Integration.
In Proceedings of the 41st IEEE/ACM International Conference on Software 
Engineering, Technical Research Paper (ICSE), 2019.

Chapter 7

Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C. Gall, 
Massimiliano Di Penta.
Configuration Smells in Continuous Delivery Pipelines: A Linter and A Six-
Month Study on GitLab.
In Proceedings of the ACM Joint European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering, Technical 
Research Paper (ESEC/FSE), 2020.

Chapter 6

RQ2

RQ3

RQ4

Figure 1.4: Structure of the next chapters of this dissertations and their relations
with the formulated research questions



1.12 Outline 35

and paper writing. I collected build and code quality data, implemented the CCQ
indicators, and analyzed the results.

Chapter 3 characterizes the anti-patterns encountered by developers when adopt-
ing CI. I collaborated with Fiorella Zampetti, Gerardo Canfora, and Massimiliano
Di Penta from University of Sannio, Sebastiano Panichella from Zurich University
of Applied Sciences, and my supervisor Harald C. Gall. I contributed to the
study design, the paper writing, and I conducted the majority of the interviews
(together with their transcription). The manual labeling of StackOverflow posts
and interview transcripts, that we used to build the catalog of anti-patterns, was
equally distributed between the first author and me.

Chapter 4 defines a taxonomy of build failures based on their root causes. My
collaborators were Fiorella Zampetti and Massimiliano Di Penta from University of
Sannio, Daniele Romano from ING Nederland, Andy Zaidman from Delft University
of Technology, and my former colleagues Gerald Schermann, Philipp Leitner, and
Sebastiano Panichella. I contributed to the study design, the collection of build logs,
the manual inspection of error messages, the data analysis, and the paper writing.
Note that part of the data collection (i.e., build logs from ING) was performed
during my master thesis work.

Chapter 5 presents an approach for summarizing build failure logs. This work
was done in collaboration with my former colleague Sebastian Proksch, a former
bachelor student Timothy Zemp, and my supervisor Harald C. Gall. I contributed
to data analysis and paper writing. I designed prototype, experiment, and survey.

Chapter 6 describes an approach for detecting configuration smells in build
pipelines. I collaborated with Massimiliano Di Penta from University of Sannio,
my former colleague Sebastian Proksch, Anna Jancso, and my supervisor Harald C.
Gall. I contributed to the prototype and experimental design, the manual analysis
of configuration smells, and the paper writing. I selected the input data of our
study and analyzed the results.



36 Chapter 1. Synopsis

Chapter 7 illustrates an approach for identifying CI decay. My collaborators were
Massimiliano Di Penta from University of Sannio, my former colleague Sebastian
Proksch, and my supervisor Harald C. Gall. I contributed to survey, experiment,
and tool designs, and to the paper writing. I implemented the tool, collected data
used as input of our study, and analyzed the results.

During my Ph.D., I also published other research works that are not included
in this dissertation. As described in Figure 1.5, they are grouped into the following
topics:

• Configuration of Static Analysis Tools We conducted a study where we
investigated how people configure static analysis tools and the importance of
considering contextual information to reduce false alarms. We also studied
the relevance of static analysis tools in open-source projects.

• Improvement of a CI process In addition to helping developers with estab-
lishing CI, we analyzed possible directions for further improvement of the CI
practice. This topic also includes a research work that was extended later
(see Chapter 5).

• Continuous Refactoring We studied how and when developers perform refac-
toring in open-source projects. We then surveyed developers on the need for
continuous refactoring (i.e., the practice of continuously looking for refactoring
opportunities) in CI.
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Abstract
Continuous Integration (CI) is a software engineering practice where developers
constantly integrate their changes to a project through an automated build process.
The goal of CI is to provide developers with prompt feedback on several quality
dimensions after each change. Indeed, previous studies provided empirical evidence
on a positive association between properly following CI principles and source code
quality. A core principle behind CI is Continuous Code Quality (also known as
CCQ, which includes automated testing and automated code inspection) may
appear simple and effective, yet we know little about its practical adoption. In this
paper, we propose a preliminary empirical investigation aimed at understanding
how rigorously practitioners follow CCQ. Our study reveals a strong dichotomy
between theory and practice: developers do not perform continuous inspection but
rather control for quality only at the end of a sprint and most of the times only on
the release branch.
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2.1 Introduction

“Improving software quality and reducing risks” [25]. This is how Continuous
Integration (CI) has been put forward by Duvall et al. [25] and is widely perceived
by developers and students [59]. Concretely, CI is an agile software development
process aimed at continuously integrating changes made by developers working on
a shared repository; a build server that is used to build every commit, run all tests,
and assess source code quality [47].

Duvall et al. [25] have proposed a set of principles that developers should
methodically follow to adopt CI. For instance, CI users should build software as
soon as a new change to the codebase is performed, instead of building software at
certain scheduled times (e.g., nightly builds). A key principle of CI, as advocated
by Duvall et al. [25], is continuous inspection, which includes running automated
tests and performing static/dynamic analysis of the code at every build, as a way
to ensure code quality. This aspect of CI is also known as Continuous Code Quality
(CCQ).

Previous work provided evidence on the potential of CI in achieving its stated
goals. Vasilescu et al. [124] quantitatively explored the effect of introducing CI
on the quality of the pull request process, finding that it improves the number
of processed pull requests. Khohm et al. [51] studied whether and how shifting
toward a shorter release workflow (i.e., monthly releases) had an effect on the
software quality of Firefox, reporting significant benefits. Others found evidence
of reduced time-to-market associated with CI [135] and the possibility to catch
software defects earlier [46].

However, empirical knowledge is still lacking on the actual practice of CCQ:
How strictly do practitioners adopt CCQ? What are the effects resulting from
practitioners’ approach to CCQ? To scientifically evaluate CCQ and its effects,
as well as to help practitioners in their software quality efforts, one has to first
understand and quantify current developers’ practices. In fact, an updated empirical
knowledge on CCQ is paramount both to focus future research on the most relevant
aspects of CCQ and on current problems in CI adoption, as well as to effectively
guide the design of tools and processes. To this aim, we conduct a large-scale
analysis that involves a total of 148,734 builds and 5 years of the development change
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history of 119 Java projects mined by SonarCloud and TravisCI, two well-known
providers of continuous code quality and continuous integration data, respectively.
We study the adoption of continuous code quality by measuring metrics like the
number of builds subject to quality checks and frequency of the measurements.

Our findings reveal that only 11% of the builds are subject to a code quality
check and that practitioners do not apply CCQ, rather run monitoring tools just
at the end of a sprint. Moreover, only 36% of branches are checked.

2.2 Background and Related Work

This section provides an overview of the principles behind continuous code quality
as well as the related literature.

2.2.1 Continuous Code Quality

There are a few basic principles at the basis of continuous integration [25]. Besides
maintaining a single source code repository, the idea behind CI is to automate
the correct integration of code changes applied by developers as much as possible.
This is normally obtained by having a dedicated build server responsible for taking
all the new commits as input and automatically build, test, and deploy them. In
addition, code quality assessment tools are used in order to control how much the
performed change respects the qualitative standards of the organization. Thus, the
principle of continuous code quality translates into having a development pipeline
composed of a repository, a CI build server, and a CCQ Service. The developer
commits a change to a repository (e.g., hosted on GitHub), triggering a new build
on the CI build server (e.g., TravisCI). The server transfers the change to a different
server (called CCQ Service) that is in charge of performing the quality analyses
and reporting back the outcome to the CI build server. Based on its configuration,
the CI build server decides on whether the build fails depending on the results of
the CCQ service.

CI build server users can configure the build in a customized way, e.g., sending
only specific builds or builds on specific branches to the CCQ service for inspection.
This configuration allows users to depart from the continuous quality practice as
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prescribed [25] and to follow a different strategy. The decision to depart from the
prescribed CCQ practice is at the basis of our work, which is focused on a deeper
understanding of the actual CCQ practices.

2.2.2 Related Work

In the last years, researchers have proposed a growing number of studies targeting
CI practices [10, 134, 135], also thanks to the increasing availability of publicly
available CI data [11].

Hilton et al. [46] employed a mixed-method approach to study the use of CI
in open-source projects. They first mined the change history of 34,544 systems,
finding that CI is already adopted by the most popular projects and that the
overall percentage of projects using CI is growing fast. In the second place, the
researchers surveyed 442 developers on the perceived benefits of CI. The main
perceived advantage is that CI helps projects release more often.

Hilton et al. [45] proposed a qualitative study targeting the barriers developers
face when using CI. The study comprised two surveys with 574 industrial developers,
with the main findings presenting the trade-offs between (i) speed and certainty, (ii)
information access and security, and (iii) configuration options and usability. The
authors motivated the need for new methods and tools able to find a compromise
between those perspectives. The results discussed so far were also confirmed by
Laukkanen et al. [59] and Kim et al. [53], who reported on industrial experiences
when using CI.

Complementing the studies mentioned above, our investigation aims at under-
standing how rigorously developers adopt CCQ.

Other researchers investigated the use of automated static analysis tools (know
as ASATs) in CI. Specifically, Zampetti et al. [142] observed that a low number of
builds fail because of warnings raised by ASATs, while Vassallo et al. [126] reported
that developers configured static analysis tools only at the beginning of a project.
Our study further elaborates on how developers use ASATs in CI, by exploring
how they use them in order to perform CCQ.
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2.3 Overview of the Research Methodology

As Duvall et al. stated in previous work [25], the time between discovery and fix
of code quality issues can be significantly reduced by continuously inspecting the
code. Thus, the application of the continuous inspection principle is stated to be
crucial for fulfilling the main advantage of CI, i.e., “improving software quality and
reducing risks” [25].

The goal of the study is to quantify the gap (if any) between the continuous
inspection principle (also known as continuous code quality) and the actual practices
applied by developers with the purpose of providing initial guidelines and tools for
future research in the field of continuous integration. Thus, our investigation is
structured around one research question: how is CCQ applied to projects in CI?.

The perspective is of researchers and practitioners interested in understanding
whether code quality assessment is performed continuously in CI.

In order to answer our research question and guide future research on CCQ
practice, we first need to construct a dataset containing projects developed through
a CCQ pipeline. The context of our study consists of such a dataset, which includes
119 projects selected as reported in Section 2.4.

Then, we devise a set of CCQ metrics for assessing the actual CCQ adoption
(described in Section 2.5.1) and measure them over the history of the projects in
our dataset (Section 2.5.2).

2.4 Continuous Code Quality Data Collection

To conduct our investigation, we need to study projects that not only use CI, but
also: (i) adopt a CCQ pipeline, (ii) adopt a static analysis tool that stores the
quality measurements performed over their history, and (iii) have CI-related events
available, so that we can contextualize CCQ measurements in their evolution.

Since an already built dataset that fulfills our criteria is not available, we build
our own. The definition of an ad-hoc data collection strategy is necessary because
CCQ and CI events are stored on different servers and the alignment of the CCQ
change history over the change history recording all the events occurred on the CI
build server required the definition of heuristics to properly match the two sources.
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In the next sections, we describe the procedure we follow to build the dataset,
which is composed of three main steps such as (i) collecting data from the CCQ
server, (ii) collecting data from the CI build server, and (iii) aligning the change
history coming from the two sources.

2.4.1 Collecting CCQ Data

SonarCloud is a cloud service based on SonarQube1 that continuously inspects
code quality and detects bugs, vulnerabilities, and code smells. SonarQube is one
of the most widely adopted code analysis tools in the context of CI. SonarQube
is a SonarSource product that is adopted by more than 85,000 organizations and
that support more than 20 languages—including the most popular ones according
to the TIOBE index. SonarQube provides developers with its own rules and
incorporates rules of other popular static and dynamic code analysis tools. As an
example, SonarQube runs all the most popular code analysis tools (i.e., CheckStyle,
PMD, Findbugs, Cobertura) by default on Java projects. Thus, the relevance of
SonarQube in the context of CI motivates the decision to focus on systems using
SonarCloud as CCQ service.

Overall, 14,152 projects are actively using SonarCloud, even though some of
them are private and, thus, not accessible. We query SonarCloud using the available
web APIs2 and extract the list of all the open source projects that use the free
analysis service, reaching 1,772 candidate systems.3

2.4.2 Collecting CI Data

Starting from the initial population of 1,772 candidate systems, we keep projects
that use TravisCI as build server, as this ensures that the project actually adopts a
CCQ practice. We select TravisCI as it provides the entire build history, as opposed
to other build servers (e.g., Jenkins) where only the recent builds are typically
stored [124].

Selecting projects using TravisCI as CI server and SonarCloud as CCQ service is
not trivial. While TravisCI provides a direct and easy integration with SonarCloud,

1https://www.sonarqube.org 2https://sonarcloud.io/web_api
3The complete list is available in our online appendix [125].

https://www.sonarqube.org
https://sonarcloud.io/web_api
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there is no explicit link between those two services, meaning that one cannot
directly infer which projects use both services at the same time. Thus, we need to
create such a link. Among the information available on SonarCloud, the projects
report the URL referring to the source code repository; this URL provides us with
an exploitable solution to identify the desired systems. In particular, TravisCI
is used to build projects hosted on GitHub: therefore, we first consider all the
projects available on SonarCloud that expose a GitHub URL. This step reduces
the number of candidate projects to 439 (i.e., 25% of all SonarCloud systems).
Subsequently, using the GitHub URL we query the TravisCI APIs4 and check if a
certain URL is present on the platform: 390 projects match the selection criteria,
i.e., SonarCloud systems that are on TravisCI. As a final step, we remove projects
having less than 20 CCQ checks over their history.5 This filter is needed to avoid
the analysis of projects that do not really integrate a CCQ service in their pipeline;
in other words, we only consider projects that actively apply CCQ. At the end of
this process, our dataset comprises 119 projects.

2.4.3 Overlaying CCQ and CI Information

Once the explicit link between SonarCloud and TravisCI is available, the final step
of the data collection process is to overlay the separate change history information
available in two sources. Also, in this case, there is no explicit way to link a data
point available SonarCloud to one on TravisCI. We solve this as in the following.
For each of the 148734 builds available on TravisCI we first collect (i) build id,
(ii) triggering commit (i.e., commit message and id), (iii) build status (i.e.,
failed, errored, passed), (iv) starting date, and (v) ending date. Then, we use
the starting date parameter of the build to identify the corresponding data point
on SonarCloud.

Specifically, let bi ∈ Ti be a build done on the branch br in the CI history Ti

of the project i available on TravisCI, and let mik ∈ Sik be a measurement of a
certain metric k for project i on the branch br in the CCQ history Hik available on

4https://developer.travis-ci.com
5The threshold of 20 is fixed in a similar way as done in previous work [20, 49, 70].

https://developer.travis-ci.com
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SonarCloud, we considered mik to be the measurement corresponding to bi if the
following relation held:

date(mik) ≥ startingDate(bi) ∧ date(mik) ≤ startingDate(bi+1)

In other words, for each of the 119 considered projects, we compute the time interval
in which two subsequent builds (i.e., bi and bi+1) are performed on TravisCI and
assign a quality measurement to the build bi if it was started within that time
window. For each considered project, the final result is an overlaid change history,
which contains information about the measured metric(s) and value(s), for each
measured build (i.e., a build subject to a measurement on SonarCloud).

2.5 Continuous Code Quality in Practice

In this section, we discuss how continuous code quality is applied in the selected
projects. Specifically, we first present the CCQ metrics that we conceive to
automatically assess the CCQ practice. Then, we show how our projects perform
against the CCQ metrics over their development’s history.

2.5.1 Definition of CCQ Metrics

Our study aims at assessing the practical use of CCQ. Based on the constructed
overlaid change history of the 119 subject projects, we devise four indicators for
measuring the actual CCQ usage:

CQCR – Code Quality Checking Rate: Number of builds subject to a code
quality check divided by the total number of builds.

EFC – Elapsed Frame between Checks: Average number of builds between
two builds subject to a code quality check.

ETC – Elapsed Time between Checks: Average number of days between two
builds subject to a code quality check.
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Table 2.1: CCQ usage indicators applied to our projects

Project Set CCQ Usage Indicators

Feature Level # projects CQCR EFC ETC CB

Age
Low 30 0.14 7.72 14.49 0.62
Medium 58 0.17 10.86 18.33 0.25
High 30 0.06 39.08 16.49 0.33

Contribution
Low 27 0.14 8.99 16.67 0.39
Medium 61 0.12 9.74 16.69 0.41
High 30 0.05 36.76 17.33 0.22

Popularity
Low 30 0.14 9.42 15.63 0.49
Medium 58 0.12 10.61 15.47 0.33
High 30 0.06 37.34 20.20 0.27

Overall 0.11 18.30 16.91 0.36

CB – Percentage of Checked Branches: Number of branches containing at
least one build subject to a code quality check divided by the number of total
branches scheduled for build.

We design these CCQ usage indicators (based on the guidelines by Duvall et
al. [26]) to understand how well CCQ is performed from different perspectives.
CQCR is the basic metric that reveals the fraction of builds that are qualitatively
measured during the history of a project, thus giving a view on the extent to
which developers use to check builds in their projects. EFC and ETC measure the
frequency of the quality checks in the considered projects, in terms of the average
number of builds and days, respectively, that are waited before performing a new
quality check. CB indicates if there are branches that are not checked at all: in
this case, we want to measure whether there are branches that are more prone to
be subject of qualitative checks.

2.5.2 On the Current Application of CCQ

Table 2.1 reports the results of our study aimed at investigating how CCQ is applied
in practice. The table reports the overall values (row “Overall”) of each considered
metric, i.e., Code Quality Checking Rate (CQCR), Elapsed Frame between Checks
(EFC), Elapsed Time between Checks (ETC), and Percentage of Checked Branches
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(CB). Moreover, with the aim of deeper understanding whether the characteristics
of the projects influence our observations, we also report the overall metric values
when splitting the systems by age, contribution, and popularity.

We exploit the GitHub APIs6 to identify (i) the number of performed commits,
(ii) the number of contributors, and (iii) the numbers of stars of a certain repos-
itory, respectively. For each considered perspective (i.e., age, contribution, and
popularity), we split projects into three different subsets, i.e., low, medium, and
high. Specifically, we calculate the first (Q1) and the third (Q3) quartile of the
distribution representing the number of commits, contributors, and stars of the
subject systems. Then, we classify them into the following categories: (i) low if
they have a number of commits/contributors/stars n lower than Q1; (ii) medium if
Q1 ≤ n < Q3, and (iii) high if n is higher than Q3. As shown in Table 2.1 (column
“# projects”), we inadvertently achieved a good balance among the different subsets
in terms of the number of contained projects.

Looking at the results, we can first observe that, overall, only 11% of the builds
are qualitatively checked (CQCR value). This is a quite surprising result, because
it clearly indicates that projects are not continuously inspected. In the lights of
this finding, we can claim that the continuous inspection principle is generally not
respected in practice.

When considering projects split by categories, i.e., low, medium, and high for
age, contribution, and popularity, we can perceive a trend in the results. Young
and medium-age projects exhibit higher values for CQCR with respect to the more
mature projects, yet still have a pretty low percentage of monitored builds (14%
and 17%, respectively). This finding seems to suggest that the application of CCQ
becomes even harder when increasing the number of commits, and consequently
the number of builds of a software project. We find that only 6% of the builds
pass for a quality check in long-lived systems, while the percentage is 5% in case
of an high number of contributors. This result triangulates the findings by Hilton
et al. [46], revealing that developers are still not very familiar with all the CI
principles and tend to not apply them properly. At the same time, it seems that
community-related factors play a role in the application of CCQ. Indeed, our
findings suggest that communities with a large number of contributors are less

6https://docs.github.com/en/rest

https://docs.github.com/en/rest
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prone to apply CCQ: this is in line with previous work that showed how large
communities generally have more coordination/communication issues, possibly
resulting in technical pitfalls [14, 37, 114].

The most popular projects are generally more likely to use CI [46], however—
according to our results—they do not apply CCQ properly. This is visible in
Table 2.1, where we observe that only 6% of the builds of popular projects are
qualitatively monitored. Conversely, low and medium-popular systems exhibit a
higher number of measured builds.

The projects using CI do not continuously inspect the source code. Moreover, the
percentage of qualitatively monitored builds is lower for systems with large numbers
of commits and contributors.

Elapsed Frame between Checks (EFC) measures the average number of builds
between two builds subject to a code quality check on the same branch. The overall
result for EFC strengthens our initial findings on the lack of CCQ. On the average,
developers perform a code quality check every 18 builds. This number still increases
where taking into account the size of the projects. Indeed, systems with a high
number of commits and contributors have an EFC score of 39 and 37, respectively.
It is important to highlight that such projects have a higher number of builds with
respect to small projects, and therefore might benefit more of a continuous check
of code quality.

Looking at and Elapsed Time between Checks (ETC), we can confirm what we
observe for the elapsed time between quality checks: developers do not perform a
continuous code quality assessment, but rather they monitor the quality at time
intervals of 17 days. This number is very close to the usual duration of a SCRUM
Sprint [7], which is often used in the CI context [57]: thus, our findings suggest that
likely the current practice merely consists of checking code quality at the end of a
sprint. This observation holds when splitting projects based on their characteristics,
as we confirm that quality checks are performed at fixed intervals.
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Developers perform a code quality inspection after several builds (on average every
18 builds) and, most likely, at the end of a sprint.

As the last indicator, we compute the percentage of Checked Branches (CB).
Table 2.1 shows a similar trend as for the other CCQ usage indicators. Also in this
case, the higher the number of commits and contributors, the lower the percentage
of branches that are subject to a quality check. This result confirms the possible
role of community-related factors, as large communities tend to be more reluctant
to apply CCQ.

Overall, only 36% of branches are checked, meaning that most of them are
developed without a formal quality control.

A low percentage of branches follow CCQ.

2.6 Discussion and Future Work

Our results highlight a number of points to be further discussed, and in particular:

• CCQ Is not Applied in Practice A clear result of our study demonstrates
a poor usage of continuous code quality, and that indeed only a very low
number of builds (11%) are qualitatively monitored. This finding opens up a
number of observations. In the first place, the low use of CCQ may be due
to a general biased perception that developers have with respect to source
code quality [12, 85]: code quality is not the top-priority for developers [28],
who prefer not to improve the existing code for different reasons, including
time pressure or laziness [117]. Most of the time developers and product
managers do not consider a quality decrement enough to fail the build process,
or they do not know how to properly set up quality gates [104]. Besides
this, our study somehow confirms the findings reported by Hilton et al. [45],
highlighting once again that developers face several barriers when adopting
CI principles.
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• The Relevance of a Development Community A key finding in our
study reports that the size of a project plays a role in the adoption of
continuous code quality. While projects having few developers perform a
(slightly) higher percentage of code quality checks, systems with a larger
community face more difficulties. This can be explained by the presence of
community-related factors that might preclude an effective management of
the development activities. Indeed, wrong communication and coordination
within software communities have been not only largely associated to the
emergence of socio-technical issues [24, 37, 63], but also related to continuous
integration aspects. In particular, Kwan et al. [56] reported a strong negative
impact of socio-technical congruence, i.e., a measure indicating the alignment
between technical dependencies work relations among software developers, on
build success. Our findings confirm the importance of studying such factors
and how they influence technical aspects of software systems more deeply.

• On the Size of Change History According to our results, projects having
a longer change history are less likely to apply CCQ. This may suggest that
a possible co-factor influencing the lack of continuous code quality control
falls in the difficulty of developers to switch toward such new continuous
monitoring in case the project is already mature.

Our initial findings pave the way to further study that we plan to conduct in
future work:

1. On the Value of Continuous Code Quality Despite previous work in the
area of agile processes [51], there is still a lack of study empirically assessing
the benefits deriving from the actual practice of code quality assessment in
CI. We build a dataset of projects using both CI Server and CCQ Service (as
explained in Section 2.2). Thus, compared to previous work [124, 142] we are
able to analyze the decisions of developers (i.e., whether perform code quality
or not) and the obtained measurements without rerunning the analysis on
projects’ snapshots that might cause several threats, such as the unavailability
of the configuration file or the impossibility to build a snapshot [118]. As
future work, we plan to measure the effectiveness of the actual CCQ practice
in maintaining software quality.
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2. Key Scenarios in Continuous Code Quality Given the fact that code
quality is not continuously assessed in CI, we are interested in determining
the circumstances (e.g., development tasks) where the use of CCQ should be
particularly encouraged, as they can lead to significantly decrease the quality
of source code. It might be that CCQ is particularly effective in certain
scenarios compared to others.

3. Code Quality Recommendation in CI Slow builds are serious barriers
faced by developers using CI [45]. Automated testing and code quality
assurance tasks and are possible causes in slowing down builds. Code quality
tasks are usually postponed and scheduled in nightly builds, thus preventing
CCQ to be performed. We aim at finding a good trade-off between scheduling
code quality tasks at every new change and slowing down the build. Our vision
is to predict which quality measurements perform before triggering a new
build. Given the actual build context described in terms of several features
(e.g., checked-out branch, type of development task, etc.), a recommender will
automatically schedule a new code quality task enabling the proper warnings.

2.7 Threats to Validity

This section discusses possible threats that might have affected the validity of our
observations.

We mined information from different sources and combined them using heuristics
that were needed because of the lack of an explicit link between them. To infer
projects using both SonarCloud and TravisCI we used their Github URL—exposed
on the first platform—as a means for understanding whether they also use TravisCI
as build server. This linking process can be considered safe, as the Github URL of
a project is unique and, thus, there cannot be cases where the history of a project
on SonarCloud was overlaid with the one of another project on TravisCI. As for
the overlay of the change history information of the two platforms, we exploited the
build and measurement dates to understand to which build a certain measurement
referred to. Also, in this case, the linking procedure cannot produce false positives
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because there are not cases in which different builds might have been performed
between the dates considered.

As for the generalizability of the results, we conducted this study on a large
dataset composed of 119 projects. We also made some precautions to take into
account only projects that actively adopt CI and CCQ. We limited our study
to Java projects since some of the exploited platforms (e.g., SonarCloud) mainly
contained information on this type of systems. Replications aimed at targeting
projects written in different programming languages as well as industrial ones would
be desirable.

2.8 Conclusion
In this paper, we analyzed the current practice of Continuous Code Quality (CCQ).
Our findings showed that the theoretical principles reported by Duvall et al. [25]
are not followed in practice. We found that only 11% of the builds are subject
to a quality control. More importantly, the current CCQ practice merely consists
of checking code quality at the end of a sprint, thus basically ignoring the CCQ
principle.

Based on the dataset that we built overlaying change history information coming
from SonarCloud and TravisCI, we plan to investigate the impact of the current
CCQ practice on the software quality and the circumstances where developers are
particularly encouraged to check code quality more frequently. Our future research
agenda includes also the definition of techniques for assisting developers during
continuous monitoring of code quality.
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Abstract

Continuous Integration (CI) has been claimed to introduce several benefits in
software development, including high software quality and reliability. However,
recent work pointed out challenges, barriers and bad practices characterizing its
adoption. This paper empirically investigates what are the bad practices experienced
by developers applying CI. The investigation has been conducted by leveraging semi-
structured interviews of 13 experts and mining more than 2,300 Stack Overflow
posts. As a result, we compiled a catalog of 79 CI bad smells belonging to 7
categories related to different dimensions of a CI pipeline management and process.
We have also investigated the perceived importance of the identified bad smells
through a survey involving 26 professional developers, and discussed how the results
of our study relate to existing knowledge about CI bad practices. Whilst some
results, such as the poor usage of branches, confirm existing literature, the study
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also highlights uncovered bad practices, e.g., related to static analysis tools or
the abuse of shell scripts, and contradict knowledge from existing literature, e.g.,
about avoiding nightly builds. We discuss the implications of our catalog of CI
bad smells for (i) practitioners, e.g., favor specific, portable tools over hacking,
and do not ignore nor hide build failures, (ii) educators, e.g., teach CI culture, not
just technology, and teach CI by providing examples of what not to do, and (iii)
researchers, e.g., developing support for failure analysis, as well as automated CI
bad smell detectors.

3.1 Introduction

Continuous Integration (CI) [6, 15] entails an automated build process on dedicated
server machines, with the main purpose of detecting integration errors as early
as possible [10, 25, 112]. In certain circumstances, the next step is Continuous
Delivery (CD), in which code changes are also released to production in short
cycles, i.e., daily or even hourly [47].

Industrial organizations that moved to CI reported huge benefits, such as
significant improvements in productivity, customer satisfaction, and the ability
to release high-quality products through rapid iterations [17]. The undisputed
advantages of the CI process have motivated also many Open Source Software
(OSS) contributors [46, 112] to adopt it, promoting CI as one of the most widely
used software engineering practices [17, 46].

Despite its increasing adoption, the heavy use of automation in CI makes its
introduction in established development contexts very challenging [17, 46]. For this
reason, in recent work researchers investigated the barriers [45] and challenges [17]
characterizing the migration to CI. They found that developers struggle with
automating the build process as well as debugging build failures [45].

Also, once CI is in place, it might be wrongly applied, thus, limiting its
effectiveness. Previous work [25, 26, 47, 103] highlights some bad practices in its
exercise concerning commits frequency, management of built artifacts and overall
build duration. In this context, Duvall [27], by surveying related work in literature,
created a catalog featuring 50 patterns (and their corresponding anti-patterns)
regarding several phases or relevant topics of the CI process.
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In summary, previous work discussed the advantages of CI, outlined possible
bad practices and identified barriers and challenges in moving from a traditional
development process to CI. However, to the best of our knowledge, there is no prior
investigation aimed at empirically analyzing what bad practices developers usually
incur when setting and maintaining a CI pipeline.

This paper aims at empirically investigating what bad practices developers incur
when using CI in their daily development activities. This is done through (i) semi-
structured interviews with 13 practitioners directly involved in the management and
use of CI pipelines of 6 medium/large companies, and (ii) manual analysis of over
2,300 Stack Overflow (SO) posts, all related to CI topics. By relying on such sources
of information and using a card sorting approach [111], we derived a catalog of 79
CI bad smells organized into 7 categories spanning across the different dimensions
of a CI pipeline management (e.g., Repository, Build Process Organization, Quality
Assurance, Delivery). Afterward, we have assessed the perceived importance of
the 79 bad smells through a survey, which involved 26 developers working in 21
different companies.

To document the identified CI bad smells, we provide traceability (in our
dataset) between the catalog and the SO posts and interviews’ sentences. For
example, the CI bad smell “Pipeline related resources (e.g., configuration files,
build script, test data) are not versioned” is originating from a SO post1 where a
user asked:

. . . Do you keep all your CI related files checked in with your project
source? How would you usually structure your CI and build files?

whereas the CI smell “Quality gates are defined without developers considering only
what dictated by the customer” was inferred from an interview where developers
reported they were not satisfied by their static analysis, and mentioned that:

. . . in general when we use SonarQube we configure only those checks
that the customers feel important.

While a catalog of CI patterns and corresponding anti-patterns exist [27],
this paper aims at empirically inferring and validating bad practices through a

1https://stackoverflow.com/questions/1351755

https://stackoverflow.com/questions/1351755
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reproducible process, which has manifold advantages: (i) it allows us to investigate
what is the current perception of CI bad practices (based on SO posts and interviews
with experts), (ii) it allows others to replicate our process, and, possibly, to improve
our catalog or even confute our results, and (iii) it allows us to perform an unbiased
comparison between CI bad smells emerged from our study and what stated in
Duvall’s catalog. To investigate (i) the correspondence or contradiction between
what is known in literature and what we observed in the reality, and (ii) cases
in which developers follow a bad practice because they aim at pursuing trade-
offs between conflicting goals, we have analyzed and discussed the relationships
between the CI bad smells we identified, and the pattern/anti-patterns of Duvall’s
catalog [27]. Finally, the study shows that different bad smells (including those
matching Duvall’s anti-patterns) have a different degree of perceived importance.

The paper is further organized as follows. Section 3.2 provides the context of
our study by discussing the related literature. Section 3.3 defines the study, its
research questions, and details the study methodology. Section 3.4 reports and
discusses the study results, while Section 3.5 discusses the threats to the study
validity. The study implications are outlined in Section 3.6, while Section 3.7
concludes the paper.

3.2 Related Work

This section discusses related work on CI and CD, going more in-depth on bad
practices and barriers in their usage. Before discussing related work, we clarify the
terminology used hereinafter:

• We use the term “bad smells” similarly to previous work to denote “symptoms
of poor design or implementation choices” [30]. In our case, “CI bad smells” are
symptoms of poor choices in the application and enactment of CI principles.

• We use the term “bad practice” when we generically discuss the bad applica-
tion of CI principles, without referring to a specific problem.

• Finally, when referring to the catalog by Duvall [27], we use the terms
“pattern”/“anti-pattern” to be consistent with the terminology used there.



3.2 Related Work 59

However, in this paper, Duvall’s anti-patterns and our CI bad smells have
the same meaning.

3.2.1 Studies on Continuous Integration and Delivery Practice

Many researchers have studied the CI/CD practices adopted in industry and open
source projects [22, 46, 112, 113, 124]. Hilton et al. [46] conducted an extensive
study on the usage of CI infrastructure and found that CI is currently very popular
in OSS. Ståhl and Bosch [113] pointed out that in industry there is not a uniform
adoption of CI. More specifically, they have identified the presence of different
variation points in the CI term usage. Similarly, we involved different companies,
varying in size and domain, to guarantee diversity of respondents and reliability
of our results. Other researchers have focused the attention on the impact of
CI adoption on both code quality and developers’ productivity. Vasilescu et al.
[124] showed how CI practices improve developers productivity without negatively
impacting the overall code quality. From a different perspective, Vassallo et al.
[135] investigated, by surveying developers of a large financial organization, the
adoption of the CI/CD pipeline during development activities, confirming what
known from existing literature (e.g., the execution of automated tests to improve
the quality of their product), or confuting them (e.g., the usage of refactoring
activities during normal development).

While the studies mentioned above investigated CI practice and served as
inception for our work (Section 3.3.2), our perspective is different i.e., identifying
and categorizing specific CI problems into a catalog of CI bad smells.

Concerning CD practices, Chen [17] analyzed four years’ CD adoption in a
multi-billion-euro company and identified a list of challenges related to the CD
adoption. Also, Chen identified six strategies to overcome those challenges such
as (i) selling CD as a painkiller, (ii) starting with easy but important applications
and (iii) visual CD pipeline skeleton. Savor et al. [103], by analyzing the adoption
of Continuous Deployment in two industrial (Internet) companies, found that the
CD adoption does not negatively impact developer productivity, even when the
project increases in terms of size and complexity.
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3.2.2 Continuous Integration Bad Practices and Barriers

Duvall et al. [25] identified the risks that can be encountered when using CI, e.g.,
lack of project visibility or the inability to create deployable software. Such risks
highlighted the need for (i) a fully automated build process, (ii) a centralized depen-
dencies management to reduce class-path and transitive dependencies’ problems,
(iii) running private builds and (iv) the existence of different target environments
on which deploy candidate releases.

Hilton et al. [45] investigated what barriers developers face when moving to
CI, involving different and orthogonal dimensions namely: assurance, security, and
flexibility. For instance, they found that developers do not have the same access to
the environment as when they debug locally and their productivity decreases when
dealing with blocking build failures.

Humble and Farley [47], instead, set out the principles of software delivery and
provided suggestions on how to construct a delivery pipeline (including the integra-
tion pipeline), by using proper tools, automating deployment and testing activities.
Based on such principles, Olsson et al. [82] explored the barriers companies face
when moving towards CD. More specifically, they identified as barriers: (i) the
complexity of environments (in particular of network environments) where software
is deployed; (ii) the need for shortening the internal verification to ensure a timely
delivery; and (iii) the need for addressing the lack of transparency caused by an
incomplete overview of the current status of development projects.

Our work shares with previous work the challenges encountered when applying
CI, but also CD. However, the observation perspective and the stage in which the
problems are observed are different. Indeed, we do not look at problems encountered
in the transition to CI or CD, while we infer CI bad smells when CI is already being
applied. However, in some cases, the consequences of the bad smells we inferred
share commonalities with the barriers affecting the transition [82]. As an example,
we foresee some CI bad smells concerning (i) deployment of artifacts that have
been generated in a local environment, and (ii) deployment without a previous
verification in a representative, production-like environment. Also, our catalog
features a bad smell named “Authentication data is hardcoded (in clear) under
VCS”, which considers the lack of an appropriate and secure authentication when
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deploying from a CI server. In summary, our findings indicate that, even when
organizations have performed a transition towards CI/CD, some issues previously
identified as barriers still arise, and some more can occur.

Duvall defined a comprehensive set of 50 patterns and related anti-patterns
regarding several phases or relevant topics in the CI/CD process [27]. In the
catalog, it is possible to find bad habits concerning the versioned resources, the way
developers use to trigger a new build, test scheduling policies, and the use of feature
branches. Duvall also highlighted the need for a fully automated pipeline having a
proper dependency management, a roll-back release strategy and pre-production
environments where the release candidate should be tested. As we explained in the
introduction, while it is not our intent to show whether our catalog is better or
worse than the one by Duvall, we (i) define and apply an empirical methodology to
derive CI bad smells, (ii) study the developers’ perception of such bad smells, and
(iii) finally, we discuss the differences between the two catalogs, as well as cases
in which a bad smell present in both catalogs was considered as not particularly
relevant by the study respondents.

Vassallo et al. [129] proposed CI-Odor, an approach that detects the presence of
four CI anti-patterns (slow build, broken master, skip failed tests, and late merging)
inspired by Duvall [27]. While they focused on the automated detection of on
some Duvall’s anti-patterns, our aim is to investigate what bad practices (beyond
those by Duvall) are relevant for practitioners, also to develop further detection
strategies.

The phenomenon of slow builds was also investigated by Ghaleb et al. [36],
finding that long builds (e.g., exceeding the 10 minutes rule-of-thumb [25]) do not
necessarily depend on the project size/complexity, but may also be related to build
configuration issues, such as multiple (and failed) build attempts. To this extent,
our catalog includes various kinds of build configuration issues that can result
in such a side effect. Also, Abdalkareem et al. [1] propose to optimize the build
process by determining, through a tool named CI-Skipper, which commits can be
skipped. While this is not necessarily related to the presence of CI bad smells, it
may be a mechanism useful to solve problems related to slow builds.

The work by Gallaba and McIntosh [34] investigates configuration smells for CI
infrastructure scripts in Travis-CI (i.e., .travis.yml files), and proposes Hansel
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and Gretel, two tools to identify and remove four types of anti-patterns in Travis-
CI configuration scripts. Such anti-patterns are related to (i) redirecting scripts
into interpreters, (ii) bypassing security checks, (iii) having unused properties in
.travis.yml files, and (iv) having unrelated commands in build phases. Also in
this case, our work is complementary to such specific detectors as it provides a
comprehensive, empirically-derived catalog of CI bad smells along with developers’
perception of such bad smells.

3.3 Empirical Study Definition and Planning

In the following, we define our study according to the Goal Question Metric (GQM)
paradigm [4].

The goal of this study is to identify the bad smells developers incur when
adopting CI and assess the perceived importance of such bad smells. The quality
focus is the overall improvement of the CI process and its associated outcomes,
e.g., improving developers’ productivity and software reliability. The perspective is
of researchers interested, in the short term, to compile a catalog of CI bad smells
and use them for education and technology transfer purposes, and in the long term
to develop monitoring systems aimed at automatically identifying CI bad smells,
whenever this is possible. The context from which we have inferred the catalog of
CI bad smells consists of six companies (where we interviewed 13 experts), and
2,322 discussions sampled from SO. To assess the perceived importance of the
identified CI bad smells, we have surveyed 26 CI practitioners belonging to 21
companies, that are not involved in the previous phase of the study.

3.3.1 Research Questions

The study aims at addressing the following research questions:
RQ1: What are the bad practices encountered by practitioners when adopting CI?

This research question addresses the main goal of the study, which is the
empirical identification and categorization of CI bad practices. The output
of this categorization is a catalog of CI bad smells, grouped into categories.
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As explained in the introduction, while a catalog of CI patterns and related
anti-patterns already exists [27], our goal is to infer bad practices from pieces
of evidence, i.e., SO posts or semi-structured interviews.

RQ2: How relevant are the identified CI bad smells for developers working in CI?

While in the previous research question we derive a catalog of CI bad smells by
interviewing experts and analyzing SO discussions, it could be possible that
different bad smells might have a different degree of perceived importance. By
surveying developers, this research question aims at assessing the importance
of the bad smells identified in RQ1, and, therefore, at performing an external
validation of the compiled catalog.

RQ3: How our pieces of evidence confirm/contradict/complement the existing CI
pattern/anti-pattern catalog by Duvall [27]?

This research question aims at comparing our catalog of CI bad smells with
those from literature. This is done by performing a mapping between our
catalog and the one by Duvall [27]. It is important to remark that it is not
our goal to determine which catalog is better. Instead, we want to determine
the extent to which the anti-patterns defined by Duvall [27] are reflected
by problems occurring in real practice, and whether there are problems not
considered by Duvall [27].

3.3.2 Study Methodology

Figure 3.1 shows the overall methodology we followed to create and validate our
catalog of CI bad smells. The methodology comprises a set of steps to create the
catalog and further steps to validate it. Also, the figure reports which steps produce
results for our study research questions. Table 3.1, instead, provides essential
information about data processed/collected during our interviews and SO mining.

Inception

As first step, we performed an inception phase to enrich our knowledge on the
possible CI misuses and therefore be able to effectively conduct interviews and
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Figure 3.1: Process for CI bad smell catalog’s creation and validation

mine online discussions. To this aim, we relied on well-known books, together with
the related online resources: the Duvall et al. book on CI [25] and the book by
Humble and Farley [47]. We intentionally did not use Duvall’s catalog [27] in this
phase, because we wanted to proceed bottom-up from the problems experienced by
developers adopting CI. This allows us to perform an unbiased comparison of our
catalog with the one by Duvall in a subsequent phase of the study.

In addition, we looked at previous research articles in the area: surveys about
CI conducted in industrial context [112, 113], as well as studies focusing on specific
CI phases [10, 68, 142].

Semi-structured Interviews

The goal of the semi-structured interviews was to understand and discuss with
practitioners the problems they encountered when maintaining and using the whole
CI pipeline in practice. We conducted interviews instead of a survey because (i)
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Table 3.1: Summary of the study data used to create and validate the CI bad smell
catalog

Interviews
Interviewed Experts 13
Companies 6
Sentences 102

SO mining
Queries 192
Retrieved Posts 4,645
Manual analysis 2,322
Posts found to be relevant 533

we expected that problems varied a lot depending on the context, and therefore it
might have been worthwhile to deepen the discussion on specific CI areas; and (ii)
interviews allowed us to discuss and capture specific situations the practitioners
experienced doing CI activities. To conduct the interviews, we created an interview
guide composed of the following sections:

• Logistics: consent and privacy/anonymization notices.
• Demographics: we asked the participant the: study degree, years of expe-
rience, programming languages used, role in the CI process, and company
size/domain.

• Characteristics of the CI pipeline adopted: when CI was introduced, the
number of projects adopting it, the typical pipeline structure and adoption
of practices such as the use of branches and nightly builds.

• CI bad practices encountered: to guide the interview, we asked the main
reasons inducing a restructuring of the CI process and also, when and how
such maintenance activities have been performed. Finally, we asked the
participants to tell us what are the typical issues they have experienced using
the CI pipeline, in terms of symptoms and consequences.

The interviewed companies were identified based on the personal list of contacts
of the authors. Thus, the interviewees were either our direct contacts, or we were
forwarded to people specifically working on the CI pipeline. As shown at the top
of Table 3.1, we identified in total 13 people from six different companies (in four
cases we interviewed multiple people from the same company, working on rather
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Table 3.2: Companies involved in the interviews on CI bad smells

Company Domain Size
#1 Software for Public Admin. 30
#2 IT consultant 100
#3 IT consultant for Financial Services 800
#4 Software for PA 9,000
#5 Telco 50,000
#6 IT consultant 100,000

Table 3.3: Experts interviewed on CI bad smells

Comp. ID Role CI Intro
(years)

#1 #1 Pipeline Configuration 2
#2 Pipeline Configuration 4

#2 #3 Pipeline Configuration —
#3 #4 Pipeline Configuration —

#5 DevOps 2
#6 Design solution for Jenkins 2
#7 Pipeline Configuration —
#8 DevOps —

#4 #9 Pipeline Configuration 5
#10 Pipeline Configuration 5

#5 #11 Pipeline Configuration & DevOps 5
#6 #12 Pipeline Configuration & DevOps 3

#13 Pipeline Configuration & DevOps > 5

different projects). The interviews were conducted either in person or using a
video-conferencing system (Skype). In both cases, the audio of the interview was
recorded. Each interview lasted between 30-45 minutes on average, depending on
the participants’ availability.

All the participants have more than eight years of experience in software
development; all of them use Java; eight are also very familiar with JavaScript, and
five are knowledgeable of Python. Table 3.2 summarizes the domain/size (number
of employees) of each company, while Table 3.3 reports, for each interviewee, her
role in the CI pipeline and also from when her company started to adopt the CI
process. As shown in Table 3.2, the involved companies vary in terms of size and
domain. More importantly, as shown in Table 3.3, the majority of our respondents
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declared to be actually in charge of configuring/maintaining the whole CI pipeline,
while only two respondents are simply using the pipeline as is. Finally, each
company started to use CI two or more years ago (“–” indicates that the respondent
did not precisely know when). As an outcome, we obtained a set of transcribed
sentences from the taped interviews, referring to possible CI bad practices to use in
the subsequent phase to create the catalog. The sentences report either the current
practice, (e.g., “Our client dictates the quality gates. We have only to meet these
gates”), a perceived bad practice (e.g., “Hardcoded configurations are a CI smell”)
or, in some cases, both (e.g., “Monitor the global technical debt ratio, without
paying attention to a single developer activity. It’s up to developers to decide when
performing refactoring”). The complete set of collected sentences is available in
our replication package [144].

Analysis of Stack Overflow Posts

As a first step, we needed to identify SO tags to use for retrieving candidate SO
posts that could be relevant to our study. By scrutinizing the whole set of SO
tags available,2 we identified four CI-related tags, namely continuous-integration,
jenkins, hudson, and travis-ci, used to better contextualize the discussions (i.e.,
issues/problems identification) to CI, since in some cases you could face the same
problem in a different development practice. Then, we identified a total of 48 tags
(a complete list is available in our online appendix [144]) that could relate to the
specific activities and properties we were interested to investigate, such as Version
Control Systems - VCS (e.g.,branching-strategy, version-control), build (e.g.,batch-
file, build-process), testing (e.g.,acceptance-testing, automated-tests), performance
(e.g.,build-time) and other related tags. In the end, we performed SO queries
expecting at least one of the four CI-related tags, and one of the 48 specific tags
(192 queries).

As a result, we downloaded 4,645 candidate, non-duplicated posts. We randomly
divided such posts into two sets (ensuring proportions for each query), the first
half used for inferring the catalog of CI bad smells, and the second half used for
verifying the catalog saturation, as detailed in Section 3.3.2.

2We have queried the SO database in May 2017
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Each selected post, belonging to the first half (in total 2,322 posts), was fully
read by a tagger (one of the authors) to establish its relevance. The relevance
was expressed tagging each post as “Yes”, “Maybe”, or “No”. In the presence of a
potentially relevant post, the tagger had to report the relevant text extracted from
it in a spreadsheet. Otherwise, the tagger wrote, if needed, a short justification
for the lack of relevance (i.e., “No” tag). Tagging was performed based on the full
content of the post, not just the title.

While it was unpractical (due to the size of the dataset) to afford multiple
taggers per post, to minimize false positives, all the “Yes” or “Maybe” were
independently re-analyzed by a different tagger. Posts with a “No” were discarded
after an evaluator different from the tagger skimmed the annotation related to
the lack of relevance. While a full analysis of posts tagged with one “No” could
have reduced the number of false negatives, we preferred to reduce false positives
instead, while keeping the number of posts to analyze reasonable enough. Out of
the 2,322 manually-analyzed posts, 635 were labeled as “Yes” or “Maybe” by at
least one tagger, with an agreement of 86.3%. While we promoted to “Yes” all
posts on which the two taggers were in agreement (“Yes/Yes” or “Yes/Maybe”),
we had to resolve, by means of a discussion (involving a further author that did
not participate in the initial tagging), all the “Maybe/No” cases (128). Of such
cases, only 26 were promoted to “Yes”. This resulted in a total of 533 posts to be
used in the subsequent phases to create the catalog.

Identification of Sentences Reflecting Symptoms of CI Bad Practices

Two authors (hereinafter referred to as “coders”) analyzed the 533 SO posts
identified in the previous phase, as well as the sentences transcribed from the
interviews referring to possible symptoms of CI bad practices. The two coders used a
shared spreadsheet to group sentences and to encode the specific problem/symptom
instance using a short sentence. Upon adding the short sentence, each coder could
either select — through a drop-down menu — one of the previously defined short
descriptions, or add a new one. In other words, when performing the encoding,
each coder could browse the already created short descriptions. If no description
suited the specific case, the coder added a new short description in the list of
possible ones, making it available for the upcoming annotations. As an example,
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the coders used the sentence “Test too long in the commit stage” to highlight the
usage of a build process that does not adhere to the fast feedback practice Duvall
[27] or “Manual steps while triggering different stages in the pipeline” to point out
the lack of full automation of a CI process.

As a result, the coders defined a total of 162 initial symptoms reflecting possible
CI misuses, from the SO posts. The interviews’ transcripts contained a total of
102 sentences related to CI bad practices. The encoding of such sentences resulted
in the identification of a total of 62 symptoms of CI misuses. Of such cases, 20
were not previously found in the SO posts. This ended up in a set of 182 initial
symptoms reflecting CI bad practices.

Elicitation of the Catalog of CI Bad Smells

To address RQ1, and therefore provide a systematic classification of bad smells
faced by developers when applying CI, we performed card-sorting [111] starting
from the symptoms identified in the previous phase. We relied on an online shared
spreadsheet to perform the task.

The task was iteratively performed by three of the authors following three steps:

1. We discarded bad smells related to problems in the development process that
do not have a direct impact on CI. For instance, we excluded generic test
smells [121] or code smells [30].

2. We discarded symptoms reflecting possible CI misuses that we recognized to
be “bugs”. As an example, we found some SO discussions in which developers
discussed build failures due to the presence of bugs in third-party libraries
included in the project. While the inclusion has a negative impact on the
build process, this does not represent a CI misuse.

3. We merged related bad smells. For example, in some circumstances, a
very similar bad practice was mentioned in two different CI activities, e.g.,
arbitrarily skipping a failing static analysis check or a failing test case.

The process was iterated three times, until no further changes were applied
to the catalog. In the end, the final version of the catalog, discussed in details in
Section 3.4.1 (RQ1), features a total of 79 bad smells grouped into 7 categories.
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Catalog Validation on Unseen Stack Overflow Posts

To verify the catalog saturation, i.e., its capability to cover bad smells not en-
countered in our manual analysis, we took the remaining set of 4,645-2,322=2,323
SO posts and extracted a statistically significant sample of 330 posts. Such a
sample size was chosen to ensure a significance level of 95% and a margin of error
of ±5%. Also, the 330 posts were sampled in proportion across the query tags.
In other words, a stratified-random sampling was performed, where strata are
represented by the set of posts returned by the different queries (i.e., tags). After
that, two independent evaluators (two of the authors) selected the relevant posts
and mapped them onto the 79 CI bad smells. Where the evaluators could not find
a bad smell in the catalog matching the SO post, they added an annotation in the
spreadsheet to be able to discuss these cases (8 cases in total). After the first round
of independent classification, we found that the evaluators agreed in 76% of the
cases on whether a post was related to CI bad smells or not. While this percentage
seems high, it is still possible that they could have agreed by chance. Therefore,
we computed the Cohen’s k [18], which resulted to be 0.46 (moderate). After
that, a third author identified the inconsistent classifications and discussed with
the evaluators the reasons why this occurred, e.g., somebody classified as relevant
SO posts that were seeking technical information (howto) about given pieces of
technology. Such posts were not questioning an appropriate adoption practice, but,
instead, seeking technical details, e.g., installation or usage instructions. After that,
the two evaluators reworked again on the inconsistent cases. After the re-coding,
the Cohen’s k increased to 0.79 (substantial agreement), and the agreement rate
to 91%. Also, we computed the agreement rate in terms of the kind of smell
each evaluator associated to the post. In this case, we used the Krippendorff’s α
reliability coefficient [55] as the labeling was incomplete (i.e., for a post an evaluator
could have indicated a bad smell, and another none). We obtained a reliability
coefficient α = 0.67, which is considered an acceptable agreement.

In the end, 131 out of 330 posts were classified as related to CI bad smells
by at least one of the evaluators, out of which only 1 was not included in the
previous version of the catalog. More specifically, one SO post pointed out cases
where the build fails as soon as the first test case fails. This implies having a great
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number of build failures without having a clear vision about the whole changes
being implemented and pushed.

In summary, the results of the validation indicate that, with some exceptions,
the identified catalog is general enough. However, this does not exclude that, in the
future, further bad smells could emerge and be therefore included in the catalog.

Evaluating the Catalog through a Survey

To address RQ2, we conducted a survey involving practitioners adopting CI in their
organization. To ensure a good generalizability of the validation and to encourage
participation, we adopted the snowball [38] sampling. That is, we shared the survey
link to some contact points, and encouraged them to indicate us further participants,
or people in the company better suited to participate in the survey. We followed
this strategy because, while we had personal knowledge with a relatively limited
set of contacts, snowballing helped to reach the relevant people (i.e., those involved
in CI) and, in general, to favor participation. The online survey presented to the
participants had:

1. An introduction explaining the meaning of our CI bad smells, as well as some
basic terminology definitions for avoiding misunderstandings;

2. A demographic section similar to the one described in Section 3.3.2.
3. A set of 7 sections in which bad smells belonging to each category are

evaluated.
We asked each respondent to evaluate the relevance of each bad smell over a

5-level Likert scale [83] (strongly agree, weakly agree, borderline, weakly disagree,
strongly disagree), and we also gave the option to answer “Don’t know”. At the
end of each section, we had an optional free comment field where the respondent
could provide additional insights. The questionnaire has been administered through
Survey Hero.3 The link has been sent to the people using an invitation email,
in which we encouraged to spread the links to other CI experts. We kept the
questionnaire open for four weeks. Nobody reported to have particular issues (e.g.,
privacy issues) with the used survey administration tool.

3https://www.surveyhero.com

https://www.surveyhero.com
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After closing the survey, we obtained 26 responses from developers working in
21 different companies. Among all respondents, 15 were generic developers, while
others covered different roles including project managers (3), solution/software
architects (3), and researchers (5). All of them were involved in the CI process as
maintainers and/or used the CI pipeline.

In the company/units where the respondents work, CI was introduced less
than 5 years ago (7 cases), between 5-10 years (8 cases), and more than 10 years
ago (12 cases). Note that this varied even within the same company for different
units/projects. Most of them used Jenkins as CI automation infrastructure (17
cases), or GitLab (9 cases), while others used various kinds of infrastructures
including Concourse, Bitbucket, or even in-house solutions. The build automation
was performed mostly with Gradle (14 responses), Maven (10) and Ant (4),4 but
also with various other tools such as cmake or npm.

Mapping onto Duvall’s Anti-Patterns

To address RQ3, we analyzed the overlap of our set of bad smells with those
proposed by Duvall [27] to (i) investigate the exhaustiveness of our catalog; (ii)
determine whether the empirically derived set of bad smells are not covered in
Duvall’s catalog, pointing out also more specialized cases of CI bad smells and/or
outlining trade-offs. Note that we consider the last version of Duvall’s catalog [27]
and, in Section 3.4.3, we explain why some anti-patterns are out of the scope of
this study.

The analysis was conducted by two authors independently (each author tried
to create a mapping between Duvall’s catalog and ours). When performing the
mapping, we considered the possibility of assigning one Duvall’s anti-pattern to
multiple CI bad smells in our catalog or vice versa. In other words, the mapping is
not one-to-one.

After the first round of annotation, the two authors agreed in the mapping
with a Krippendorff α=0.65, which is just below the minimum acceptability of
α=0.66 defined in the literature [55]. Similarly to what was done in the previous
case (validation), a third author analyzed the disagreement cases and discussed

4The sum is > 26 as multiple build automation tools may be used.
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them with the two annotators. As an example of inconsistent annotations, for the
“Repository” pattern in Duvall’s catalog [27] the first annotator used the “Pipeline
related resources are not versioned” while the second one mapped it onto the
“Missing Artifact’s Repository” bad smell. With the help of a different author,
and looking at the whole description of the pattern (and related anti-pattern) in
Duvall’s catalog, the annotators converged on the fact that the anti-pattern is
clearly highlighting the needs for having all the resources required to execute the
build process under version control to avoid unnecessarily build failures. After that,
the two annotators performed the mapping of the inconsistent cases again. The
new mapping yielded an agreement rate of 80% and a Krippendorff α=0.84.

3.4 Empirical Study Results

Table 3.4-Table 3.10 provide an overview of the 79 CI bad smells emerged from
our empirical investigation. As explained in Section 3.3.2, we grouped them into 7
categories related to different dimensions of a CI pipeline management.

The third column (D) of the tables reports whether or not the bad smell maps
onto at least one of Duvall’s anti-patterns [27] (RQ3, Section 3.4.3). The fourth
and fifth column report results related to the perception of CI bad smells (RQ2,
Section 3.4.2) and, specifically, the number of respondents that evaluated that
specific bad smell (Resp.), and the evaluation results in form of asymmetric stacked
bar charts. Note that each bar chart also reports three percentages: (i) respondents
providing a disagree/strongly disagree answer, (ii) respondents providing a neutral
answer, and (iii) respondents providing an agree/strongly agree answer.

3.4.1 Overview of the CI Bad Smell Catalog

In the following, we provide a general overview of the 7 categories of CI bad smells,
without necessarily enumerating and describing all bad smells belonging to each
category. For more detailed information, the complete catalog is available in our
online appendix [144].

Repository groups bad smells concerning a poor repository organization, and
misuse of version control system (VCS) in the context of CI (see Table 3.4). Some
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Table 3.4: Results of CI bad smells’ perception - Repository
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
R1 Project decomposition in the repository does

not follow modularization principles
7 26 30% 39%30%Q1

R2 Test cases are not organized in folders based
on their purposes

7 26 48% 22%30%Q2

R3 Local and remote workspace are not aligned 7 25 30% 57%13%Q3

R4 Number of branches do not fit the project
needs/characteristics

3 26 41% 27%32%Q4

R5 A stable release branch is missing 7 25 45% 45%9%Q5

R6 Feature branches are used instead of feature
toggles

3 24 30% 45%25%Q6

R7 Divergent Branches 3 26 38% 48%14%Q7

R8 Generated artifacts are versioned, while they
should not

3 25 50% 18%32%Q8

R9 Blobs are unnecessarily checked-in at every
build instead of being cached

7 25 41% 23%36%Q9

R10 Pipeline related resources are not versioned 3 25 18% 64%18%Q10

BP41
100 50 0 50 100

Strongly disagree Weakly disagree Borderline Weakly agree Strongly agree

smells (R1–R3) deal with problems related to the repository structure which may
affect the modularity of CI solutions (e.g., to build different modules of a software
project separately). Moreover, a poor project decomposition into sub-modules
(R1) might make parallel work on branches more difficult, but also prevent from
having (some) faster builds limited to certain modules only. Then, there are bad
smells about branch misuses (R4–R7), e.g., wrong choice between the use of feature
branches and feature toggles (R6) or the use of an unbalanced number of branches
that do not fit the project’s characteristics (R4). Finally, some smells concern the
poor choice of configuration items (R8–R10).

Infrastructure Choices groups bad smells related to a sub-optimal choice
of hardware or software components while setting a CI pipeline (see Table 3.5).
Hardware issues are mainly related to a poor allocation of the CI process across
hardware nodes that could overload development machines or lose scalability (I1,
I2). Software-related bad smells (I4–I7) concern poor tool choices and configuration,
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Table 3.5: Results of CI bad smells’ perception - Infrastructure Choices
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
I1 Resources related to the same pipeline stage

are distributed over several servers
7 22 64% 14%23%Q11

I2 The CI server hardware is used for different
purposes other than running the CI frame-
work

7 25 48% 24%28%Q12

I3 External tools are used with their default
configurations

7 25 28% 28%44%Q13

I4 Different releases of tools/plugins versions are
installed on the same server

7 25 40% 48%12%Q14

I5 Different plugins are used to perform the same
task in the same build process

7 25 48% 28%24%Q15

I6 A task is implemented using an unsuitable
tool/plugin

3 25 40% 32%28%Q16

I7 Use shell scripts for a task for which there is
a suitable plugin available

7 25 44% 20%36%Q17

e.g., use of inadequate plugins for certain tasks (I6), abuse of ad-hoc shell scripts
(I7), as well as the use of external plugins with default configurations not suitable
to the specific development scenario (I3). Indeed, each tool has to be configured
according to the (i) developers’ needs, (ii) final product requirements, and (iii)
policies adopted by the organization.

Build Process Organization. This category, the one with the largest number
of bad smells (29), features CI bad smells related to a poor configuration of the
whole CI pipeline, as detailed in Table 3.6. Some of such bad smells are related to
the CI environment’s initialization. Specifically, inappropriate clean-up strategies
(BP1) could have been chosen. This, on the one hand (aggressive clean-up), may
unnecessarily slow-down the build, and, on the other hand (lack of clean-up where
needed), would make the build less effective to reveal problems.

There are two CI bad smells dealing with cases in which either monolithic builds
are used where they should not (BP4), and where there is a poor decomposition of
build jobs (BP3), e.g., including several activities in one single job or duplicating
the same activities in multiple different jobs.
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Table 3.6: Results of CI bad smells’ perception - Build Process Organization
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
BP1 Inappropriate build environment clean-up

strategy
3 25 28% 40%32%Q18

BP2 Missing Package Management 7 24 25% 58%17%Q19

BP3 Wide and inchoesive build jobs are used 3 25 44% 40%16%Q20

BP4 Monolithic builds are used in the pipeline 7 25 28% 56%16%Q21

BP5 Independent build jobs are not executed in
parallel

3 25 48% 36%16%Q22

BP6 Only the last commit is built, aborting obso-
lete and queued builds

3 25 44% 24%32%Q23

BP7 Build steps are not properly ordered 7 25 40% 48%12%Q24

BP8 Pipeline steps/stages are skipped arbitrarily 7 24 46% 46%8%Q25

BP9 Tasks are not properly distributed among
different build stages

3 23 48% 35%17%Q26

BP10 Incremental builds are used while never build-
ing the whole project from scratch

7 25 36% 36%28%Q27

BP11 Poor build triggering strategy 3 24 33% 50%17%Q28

BP12 Private builds are not used 7 22 32% 36%32%Q29

BP13 Some pipeline’s tasks are started manually 3 25 44% 44%12%Q30

BP14 Use of nightly builds 3 25 36% 48%16%Q31

BP15 Inactive projects are being polled 7 23 52% 17%30%Q32

BP16 A build is succeeded when a task is failed or
an error is thrown

3 25 28% 64%8%Q33

BP17 A build fails because of some flakiness in the
execution, whereas it should not

7 24 12% 67%21%Q34

BP18 Dependency management is not used 3 25 40% 44%16%Q35

BP19 Including unneeded dependencies 7 25 36% 44%20%Q36

BP20 Some tasks are executed without clearly re-
porting their results in the build output

7 25 24% 56%20%Q37

BP21 The output of different build tasks are mixed
in the build output

7 23 17% 48%35%Q38

BP22 Failures notifications are only sent to team-
s/developers that explicitly subscribed

3 25 44% 40%16%Q39

BP23 Missing notification mechanism 3 25 28% 56%16%Q40

BP24 Build reports contain verbose, irrelevant in-
formation

7 25 24% 56%20%Q41

BP25 Time-out is not properly configured 7 25 36% 52%12%Q42

BP26 Unneeded tasks are scheduled in the build
process

7 25 28% 44%28%Q43

BP27 Build time for the commit stage overcomes
the 10-minutes rule

3 23 22% 52%26%Q44

BP28 Unnecessary re-build steps are performed 7 25 20% 40%40%Q45

BP29 Authentication data is hardcoded (in clear)
under VCS

3 25 32% 52%16%Q46
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From a different perspective, looking at the build execution, our catalog includes
CI bad smells related to the lack of parallelization while executing independent build
jobs/tasks (BP5), the skip of certain phases/tasks just to make a previously failing
build passing (BP8), or the use of an unsuitable ordering of build phases/tasks
(BP7), e.g., a phase failing often such as static analysis checks follows a long and
expensive test phase, making the latter worthless when the build fails.

Another key issue in configuring builds is related to the triggering strategy
that may lead to some bad smells (BP10–BP15), e.g., related to builds started
manually, or to the abuse of nightly builds, useful in certain circumstances, e.g., to
run computationally-expensive tasks, but otherwise defeating the purposes of CI.

An inappropriate setting of the build outcome, e.g., succeeding a build when a
task is failed (BP16), is also considered a bad smell. The same applies when the
outcome of a build depends on some flakiness in the execution (BP17). Although
flakiness has been extensively studied in some specific context, e.g., for testing [8,
65, 86, 115], we focus on the extent to which different kinds of flakiness (related to
testing, but also to the temporary unavailability of some online resources) affect
the build outcome on a CI server. Furthermore, the build output needs to be
properly configured (BP20–BP24). Here the bad smells are related to inadequate
observability and low readability of logs/notifications.

Inadequate/wrong dependency management is also felt like a very important
problem (BP18, BP19). Previous studies reported how the majority of build failures
is due to these kinds of problems [50].

There are some bad smells dealing with those cases in which the builds result
to be particularly long such as the presence of unnecessary tasks (BP26), or
unnecessary rebuilds (BP28).

Finally, although we did not focus on security-related issues, as there is a specific
work by Rahman et al. [94], we got interview responses as well as SO discussions
related to the presence of security-sensitive data (e.g., authentication information)
hard-coded in the VCS (BP29).

Build Maintainability. Since build configuration files often change over time
and their changes induce more relative churn than source code changes [72], their
maintainability is also an important concern. As reported in Table 3.7, problems
can arise when a build configuration is coupled with a specific workspace (see BM1–
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Table 3.7: Results of CI bad smells’ perception - Build Maintainability
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
BM1 Absolute/machine-dependent paths are used 7 26 31% 65%4%Q47

BM2 Build scripts are highly dependent upon the
IDE

3 26 27% 58%15%Q48

BM3 Environment variables are not used at all 3 26 35% 31%35%Q49

BM4 Build configurations are cloned in different
environments

3 24 50% 29%21%Q50

BM5 Build jobs are not parametrized 7 25 36% 36%28%Q51

BM6 Lengthy build scripts 7 25 40% 28%32%Q52

BM7 Missing smoke test, set of tests to verify the
testability of the build

3 25 24% 44%32%Q53

BM8 Missing/Poor strict naming convention for
build jobs

7 26 15% 46%38%Q54

BM3, e.g., environment variables are not used when they should), or when the build
script is poorly commented, uses meaningless variable names, and modularity is not
used when it should be. While a recent work by Gallaba and McIntosh [34] deals
with specific problems related to the maintainability of Travis-CI .travis.yml
files, our bad smells are technology-independent and cover problems that can occur
in all scripts involved in a build pipeline.

Quality Assurance. This category relates to CI bad smells that are linkable
to testing and static analysis phases (see Table 3.8). Bad smells related to testing
are due to the lack of optimization for testing tasks within a CI pipeline:5 for
example a branch is not tested before merging it (Q5), or all permutations of
features toggles are tested (Q6) and, as a consequence, the build gets slow or fails
without a reason.

Moreover, this category features smells related to how test coverage thresholds
(resulting in build failures, when not reached) are set (Q3, Q4), or the lack of a clear
separation between test suites related to different testing activities (Q10) [68, 134].
Our catalog also includes problems related to (i) the use of production resources

5This is beyond test suite optimization, which is an important problem in testing, but out of
scope for this investigation.
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Table 3.8: Results of CI bad smells’ perception - Quality Assurance
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
Q1 Lack of testing in a production-like environ-

ment
3 25 8% 75%17%Q55

Q2 Code coverage tools are run only while per-
forming testing different from unit and inte-
gration

7 23 30% 35%35%Q56

Q3 Coverage thresholds are fixed on what reached
in previous builds

3 23 35% 30%35%Q57

Q4 Coverage thresholds are too high 3 24 46% 25%29%Q58

Q5 Missing tests on feature branches 7 26 31% 50%19%Q59

Q6 All permutations of feature toggles are tested 7 19 32% 37%32%Q60

Q7 Production resources are used for testing pur-
poses

3 25 36% 52%12%Q61

Q8 Testing is not fully automated leading to a
non-reproducible build

3 26 27% 65%8%Q62

Q9 Test suite contains flaky tests 7 26 19% 69%12%Q63

Q10 Bad choice on the subset of test cases to run
on the CI server

7 25 28% 40%32%Q64

Q11 Failed tests are re-executed in the same build 7 25 52% 20%28%Q65

Q12 Quality gates are defined without developers
considering only what dictated by the cus-
tomer

7 24 29% 42%29%Q66

Q13 Use quality gates in order to monitor the
activity of specific developers

7 25 36% 52%12%Q67

Q14 Unnecessary static analysis checks are in-
cluded in the build process

7 26 38% 42%19%Q68

during testing operations (Q7), (ii) the test suite not being fully automated pro-
voking a non-reproducible build (Q8), and (iii) the presence of flaky tests that may
unnecessarily fail the build (Q9). Note that we have excluded from our analysis the
presence of test smells [121], since they can negatively impact the understandability
and maintainability of the product under development independently from the use
of CI.

Bad smells related to static analysis are mostly due to how tools are configured
and used within a CI pipeline. More in detail, they include failing to select
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appropriate checks given the project characteristics (Q14), or setting quality gates
not representative of what is relevant for developers and/or customers (Q12).

Table 3.9: Results of CI bad smells’ perception - Delivery Process
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
D1 Artifacts locally generated are deployed 7 26 35% 58%8%Q69

D2 Missing Artifacts’ repository 3 26 35% 46%19%Q70

D3 Missing rollback strategy 3 26 15% 62%23%Q71

D4 Release tag strategy is missing 7 26 27% 50%23%Q72

D5 Missing check for deliverables 7 24 25% 62%12%Q73

Delivery Process. This category of bad smells concerns the storage of artifacts
related to a project release. As reported in Table 3.9, they are related to poor/lack
of usage of artifact repositories giving the possibility of rollback of deployed artifacts
(D2, D3), or to the adoption of bad deployment strategies (D1), e.g., deployment
of locally-generated artifacts.

Furthermore, this category includes bad smells related to software release in
the production environment. These are related to not using a strategy aimed to
validate the produced deliverables/artifacts taking part in a release (D5), or missing
a clear and well-defined tagging convention for artifacts related to specific releases
(D4).

Culture. We found bad smells whose symptoms might not be inferred by
observing the CI pipeline, but are more human-related (see Table 3.10). They deal
with the lack of a shared culture on how developers should behave when adopting
CI. These include (i) bad push/pull practices (C1, C2), e.g., pushing changes before
a previous build failure is being fixed; (ii) poor prioritization of CI-related activities
(C5, C6), including the fixing of build failures, and (iii) Dev/Ops separation (C3,
C4), i.e., developers and operators roles are kept separate, which is against the
DevOps practice and, among other negative effects, increases the burden when
fixing build failures affecting different stages of a CI pipeline.
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Table 3.10: Results of CI bad smells’ perception - Culture
( D is the mapping with Duvall’s anti-patterns, Resp is the number of respondents
that evaluated the smell, and the asymmetric stacked bar chart is presented with

the percentages of strongly disagree/disagree answers, neutral answers, and
agree/strongly agree answers.)

ID CI Bad Smell D Resp. Survey Results
C1 Changes are pulled before fixing a previous

build failure
7 23 30% 43%26%Q74

C2 Team meeting/discussion is performed just
before pushing on the master branch

7 22 32% 36%32%Q75

C3 Developers and Operators are kept as sepa-
rate roles

3 25 24% 44%32%Q76

C4 Developers do not have a complete control of
the environment

3 26 19% 46%35%Q77

C5 Build failures are not fixed immediately giving
priority to other changes

3 26 12% 58%31%Q78

C6 Issue notifications are ignored 3 25 16% 64%20%Q79

3.4.2 Perceived Importance of CI Bad Smells

In the following, we describe examples of CI bad smells perceived as very relevant,
or, on the contrary, not particularly relevant by the respondents to our survey.
As previously explained, a summary of the perceived relevance is depicted as
asymmetric stacked bar charts on the right-side of Table 3.4-Table 3.10.

Overall, our results indicate that:

1. 26 bad smells received a strongly agree/agree assessment by over 50% of the
respondents (i.e., the third percentage in the asymmetric stacked bar charts
is greater than 50%). Such bad smells are listed in Table 3.11.

2. 26 bad smells had more strongly agree/agree (but ≤ 50%) than strongly
disagree/disagree assessments.

3. 14 bad smells had more strongly disagree/disagree (but ≤ 50%) than strongly
agree/agree assessments.

4. 7 bad smells received a strongly disagree/disagree assessment by over 50%
of the respondents (i.e., the first percentage in the asymmetric stacked bar
charts is greater than 50%). Such bad smells are listed in Table 3.12.
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5. 5 bad smells received an equal number of agreement and disagreement assess-
ments.

Note that the above grouping merely serves to facilitate the discussion of
relevant/less relevant bad smells, and that, depending on the use one wants to make
of the catalog, it could be possible to group (or even rank) bad smells differently.

As regards the Repository organization (see Table 3.4), out of 10 CI bad
smells, 3 were considered relevant by the majority of respondents, and other 3
received more positive than negative assessments. Respondents found particularly
relevant the lack of alignment between the local (developers’) workspace and the CI
server workspace (R3), but also the lack of a stable release branch (R5). This was
also remarked by one of our interviewees: “Production builds have to be “shiny”,
the development ones can be “cloudy”. The last build in production must not be a
failed build.”. If there is a stable release branch, the development team always has
a software product ready to be released.

Moreover, the survey respondents felt the need for versioning all pipeline-related
resources (e.g., configuration files, build scripts, test data) as highly relevant (R10).
At the same time, our respondents gave relatively negative importance to CI bad
smells going into the opposite direction, i.e., those discouraging the versioning
of binary large objects (R9) for performance reasons), or of previously generated
artifacts (R8). While the lack of versioning for all needed resources makes impossible
the execution of the build process, the presence of previously-generated artifacts
could make the build unreproducible, and it could lead to a release of a software
product that does not reflect the last changes being applied.

Most of the bad smells belonging to the Infrastructure Choices, see Table 3.5,
received more negative than positive assessments. While the original book on CI
by Duvall et al. [25] stressed this aspect, nowadays the availability of adequate
hardware to support a CI server is generally not an issue, unless one has to deal
with very specific contexts, such as cyber-physical systems for which the pipeline
requires to be connected with hardware-in-the-loop or simulators. We would have
expected positive feedback about bad smells related to software infrastructure
choices, but this was not usually the case. In particular, the distribution of
resources related to the same pipeline stage over multiple servers (I1) was not
considered a problem, likely because, at least for some pipeline stages (i.e., the ones
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Table 3.11: CI bad smells considered relevant by the majority of respondents.

Category Smell

Repository
Local and remote workspace are misaligned (R3)
A stable release branch is missing (R5)
Pipeline related resources are not versioned (R10)

Build Process Organization

Missing package management (BP2)
Monolithic builds are used in the pipeline (BP4)
Build steps are not properly ordered (BP7)
A build is succeeded when a task is failed or an error is thrown
(BP16)
A build fails because of some flakiness in the execution, whereas
it should not (BP17)
Some tasks are executed without clearly reporting their results
in the build output (BP20)
Missing a build notification mechanism (BP23)
Build reports contain verbose, irrelevant information (BP24)
Time-out is not properly configured (BP25)
Build time for the “commit stage” overcomes the 10-minutes
rule (BP27)
Authentication data is hardcoded (in clear) under VCS (BP29)

Build Maintainability Absolute/machine-dependent paths are used (BM1)
Build scripts are highly dependent upon the IDE (BM2)

Quality Assurance

Lack of testing in a production-like environment (Q1)
Production resources are used for testing purposes (Q7)
Testing is not fully automated leading to a non-reproducible
build (Q8)
Test suite contains flaky tests (Q9)
Use quality gates in order to monitor the activity of specific
developers (Q13)

Delivery Process Artifacts locally generated are deployed (D1)
Missing rollback strategy (D3)

Culture Build failures are not fixed immediately giving priority to other
changes (C5)
Issue notifications are ignored (C6)
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Table 3.12: CI bad smells considered as not relevant by the majority of respondents.

Category Smell

Infrastructure Choices Resources related to the same pipeline stage are distributed
over several servers (I1)
Different plugins are used to perform the same task in the
same build process (I5)

Build Process Organization

Independent build jobs are not executed in parallel (BP5)
Only the last commit is built, aborting obsolete and queued
builds (BP6)
Tasks are not properly distributed among different build stages
(BP9)
Inactive projects are being polled (BP15)

Quality Assurance Failed tests are re-executed in the same build (Q11)

different from the commit stage), the overhead due to the download of required
resources from different servers may still be acceptable. Only one bad smell received
more positive than negative assessments. Such a bad smell is related to the use
of multiple plugin versions (I4), possibly causing conflicts or inconsistencies. One
SO post, while identifying the root cause of a build failure, remarked that “When
there are multiple version of [a tool] installed side by side in Build Server, ensure
right version of [the tool] is used by Build Server to execute the unit test”. Truly,
an inconsistency may not necessarily result in a build failure, but may produce
slightly different outputs that might confuse developers or even fail external tools
consuming such outputs. The usage of default configurations in build scripts (I3)
received an equal proportion of positive and negative assessments. While previous
research has highly motivated the need for properly configuring tools used in the
build (e.g., static analysis tools, see the work of Zampetti et al. [142]), it was also
found that developers rarely pay attention to that [9].

As expected, we received positive feedback by the majority of respondents for
several (11 out of 29) bad smells belonging to the Build Process Organization,
i.e., on how all steps of a build are configured through build automation scripts, as
detailed in Table 3.6. In this context, a relevant bad smell is the lack of a proper
package management mechanism (BP2) in the build automation. Specifically, if
the CI pipeline does not include a package manager, developers might wrongly
assume the presence of resources no longer available or use an outdated version of
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them. Furthermore, it becomes difficult to manage tools included in the pipeline,
in terms of installing, upgrading, configuring, and removing them. By using a
package manager it is possible to specify when checking for updates, thus avoiding
to download all dependencies at each build. The CI bad smell discussed above
originates from an interviewee who clearly stated that: “Sometimes we don’t clean
the dependencies (that are not useful anymore) in our project. As a result, we have
huge packages that are time-consuming to deploy”.

Another relevant bad smell in this category is the lack of decomposition of
builds into cohesive jobs, resulting in a monolithic build (BP4). This bad smell
produces several side effects, including the difficulty in (i) identifying the cause for
a build failure, (ii) parallelizing multiple jobs, and (iii) maintaining the overall build
process. A slightly different problem that is considered relevant by our respondents
is the one dealing with having a sub-optimal ordering of tasks (BP7) in a build
process. In other words, some build steps should be always performed before others,
e.g., integration testing should be scheduled before deployment in the production
environment in order to discover faults earlier.

The way the build output is reported is also particularly important. First of
all, respondents believe that ignoring the outcome of a task when determining
the build status (BP16) defeats the primary purpose of CI. These kinds of smells
may occur when, for example, static analysis tools produce high-severity warnings
without failing a build. While a previous study found that this practice is indeed
adopted for tools that may produce a high number of false positives [138], one
SO post remarked that “. . . if the build fails when a potential bug is introduced,
the amount of time required to fix it is reduced.”, and a different user in the same
discussion highlighted that “If you want to use static analysis do it right, fix the
problem when it occurs, don’t let an error propagate further into the system.”. A
related bad smell judged as relevant is the lack of an explicit notification of the
build outcome (BP23) to developers through emails or other channels. In other
words, having the build status only reported in the CI dashboard is not particularly
effective, because developers might not realize that a build has failed.

Furthermore, it can be troublesome if tools do not (clearly) report results in
the build logs (BP20, BP21) since their output might be difficult or impossible to
access when the tool is executed on a CI server. At the same time, a very verbose
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build log (BP24) containing unnecessary details (this depends on how different
tools/plugins are configured) would make the build result difficult to browse and
understand. Quite surprisingly, even if an interviewee remarked that “To skip
tests is always an anti-pattern”, our survey results report the same proportion of
agreement and disagreement on this bad smell (BP8). This is a surprising result
since it is difficult to imagine some circumstances in which hiding the presence of
issues/problems in the build is a good practice.

Concerning Build Maintainability, out of eight bad smells, two received a
positive assessment by the majority of respondents and other two received more
positive than negative responses (see Table 3.7). The two most positively-assessed
bad smells were related to the usage of absolute paths in the build (BM1), and
the coupling between the build and the IDE (BM2). The high perceived relevance
of such smells is justified considering that their presence will unavoidably limit
the portability of the build resulting in statements such as “but it works on my
machine”. The need for performing smoke-testing (BM7) was also considered
relatively important, as well as the usage of suitable naming conventions inside the
build scripts (BM8).

While there were no bad smells for which the majority of respondents provided
a negative assessment, quite surprisingly, the lack of usage of environment variables
(BM3), the cloning of build scripts (BM4), and the presence of lengthy build scripts
(BM6) received more negative than positive assessments. As regards the build
configurations being cloned in different environments, our interviews and the mined
SO posts highlighted that developers should make use of parametrized build jobs
and environment variables to enable reuse of build jobs. However, this bad smell
(BM4) may be very project-dependent. Indeed, it may be crucial in presence of
critical projects where developers need to deploy and test in different environments
in which they need to slightly change the build configuration based on the target
environment, and define a different chain of build jobs for each environment.

About Quality Assurance, out of 14 bad smells, five received a positive
assessment by the majority of respondents, and six more positive than negative
assessments (see Table 3.8). Respondents considered as relevant the lack of testing
in a production-like environment (Q1), while at the same time they considered
dangerous the use of production resources for testing purposes (Q7). The latter has
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been also highly discussed in SO. Indeed, in a SO post, a user searching “. . . for the
CI server to be useful, my thoughts are that it needs to be run in production mode
with as close-as-possible a mirror of the actual production environment (without
touching the production DB, obviously)”. By analyzing the provided answers on SO,
we found that “Testing environment should be (configured) as close as it gets to
the Production” concluding the discussion by highlighting that “The best solution
is to mimic the production environment as much as possible but not on the same
physical hardware”.

Concerning testing automation, the need for a fully-automated testing process
(Q8) was considered important, because manual tests would be excluded from auto-
mated build within CI. Furthermore, flaky tests (Q9) were considered particularly
problematic in the context of CI, indeed we found many SO discussions in which
developers struggled improving the overall build reliability while having randomly
failing tests. As an example, a SO question in which a user asked “ I’d like to know
if there is a way to . . . warn of failing tests only if the same tests fail in the previous
builds. This, albeit not a perfect solution, would help mitigate the randomness of
tests and the effort to analyse only those that are real bugs.”. The above findings
help us in explaining why the majority of respondents considered irrelevant the
re-execution of failed tests within the same build (Q11).

Concerning the usage of static analysis, the majority of respondents considered
a problem the use of CI (and static analysis tools) to monitor specific developers
(Q13) since, as also highlighted in our interviews, this kind of monitoring only
negatively impacts the overall developers’ productivity and their ability to work
in a team. Moreover, one interviewee also highlighted that “Monitor the global
technical debt ratio, without paying attention to single developer activity. It’s up
to developers to decide when to perform refactoring.”. As regards the definition
of quality gates only based on customers’ guidelines (Q12), we got more positive
than negative judgments. Indeed, customers could not have enough knowledge
about the software development process and the implemented source code. This
might result in an excessive number of build failures, due to some quality checks
suggested by developers [48] (e.g., on a too low cyclomatic-complexity threshold or
too high test-coverage threshold) or, on the contrary, might result in the omission
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of some relevant checks that only developers might consider, e.g., because they
know details about the source code.

In general, we received particularly positive feedback for the bad smells related
to the categories Delivery Process and Culture. All bad smells belonging to the
Delivery Process category obtained a positive assessment either by the majority
of respondents or, at least, they received more positive than negative assessments
(see Table 3.9). The most relevant bad smells were related to the deployment of
artifacts generated locally (D1) (i.e., on the developers’ machine rather than on
the CI infrastructure), to the absence of an artifact repository where to deploy
released products (D2), and to the lack of a rollback mechanism (D3).

About the Culture category, the majority of respondents considered relevant
bad smells related to not trying to fix a build failure immediately (C5), and
ignoring CI notifications (C6), see Table 3.10. Other bad smells related to how
work is organized received more positive than negative feedback. They concern
(i) pulling from the repository when a build has failed (C1), (ii) organizing a
meeting just before pushing to the master (C2), (iii) keeping separate the developer
and operator roles (C3), and (iv) developers that do not have complete control
of the CI environment (C4). This indicates how the lack of a shared view on
how developers (and teams) should behave when adopting CI would diminish the
advantages introduced by putting in place a suitable (and in some cases complex)
CI infrastructure.

3.4.3 Mapping and Comparison with Duvall’s Anti-Patterns

Table 3.13 reports the mapping between Duvall’s patterns and our CI bad smells.
Note that we use the pattern name, because Duvall, under each pattern, reports a
brief description of the good practice (pattern) and the corresponding bad practice
(anti-pattern). For brevity, in Table 3.13 and in the remainder of this section,
we refer pattern/anti-pattern using the pattern’s name, however, we discuss the
comparison considering Duvall’s anti-patterns and our CI bad smells. Where
necessary, we also report the corresponding anti-pattern in our text. The last
column summarizes the perception of the CI bad smell (detailed values are in
Tables 3.4-3.10) corresponding to each Duvall’s pattern. In particular, we use
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(i) ↑↑ to indicate bad smells that received a positive assessment by the majority
of respondents; (ii) ↑ for bad smells that received more positive than negative
feedback (but ≤ 50% of positive answers); (iii) − for bad smells that received
an equal proportion of positive and negative feedback; (iv) ↓ for bad smells that
received more negative than positive feedback (but ≤ 50% of negative answers); and
(v) ↓↓ to indicate bad smells that received a negative assessment by the majority
of respondents.

The mapping is not one-to-one. For example, on the one side, the “Pipeline
related resources (e.g., configuration files, build script, test data) are not versioned”
(R10) in our catalog covers 3 different patterns from Duvall’s catalog, namely
“Repository“ (where the anti-pattern mentions “some files are checked in others,
such as environment configuration or data changes, are not. Binaries — that can
be recreated through the build and deployment process — are checked in”), “Single
Path to Production” (the anti-pattern mentions “parts of system are not versioned”)
and “Scripted Database” (the anti-pattern mentions “manually applying schema
and data changes to the database.”). All these anti-patterns highlight the presence
of resources needed for the CI process that are not versioned. On the other side, the
“Build Threshold” pattern in Duvall’s catalog (the anti-pattern mentions “learning
of code quality issues later in the development cycle.”) matches 3 different bad
smells in our catalog, namely “Coverage thresholds are too high” (Q4), “Coverage
thresholds are fixed on what reached in previous builds” (Q3), and “A build is
succeeded when a task is failed or an error is thrown” (BP16).

Our catalog, composed of 79 bad smells, covers 39 out of 50 Duvall’s anti-
patterns, while 11 of them are left uncovered. Going more in-depth into anti-
patterns uncovered by our CI catalog, we found two cases, namely “Configuration
Catalog” (the anti-pattern says “configuration options are not documented”) and
“Commit Often” (the anti-pattern says: “source files are committed less frequently
than daily . . . ”). Such anti-patterns are mainly related to versioning system’s
usage not directly specific to the CI context. Moreover, there are other 4 Duvall’s
anti-patterns mainly related to planning activities, which are out of the scope of
CI, and therefore were not covered in our interviews nor in the analyzed SO posts.
These are:
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Table 3.13: Mapping between Duvall’s patterns (and their corresponding anti-
patterns) and CI bad smells
Duvall Pattern CI Bad Smell Rel.
Configurable Third-Party Sw. A task is implemented using an unsuitable tool/plugin (I6) ↓
Configuration Catalog 7

Mainline Number of branches do not fit the project needs/characteristics
(R4)

↓

Merge Daily Divergent branches (R7) ↑
Protected Configuration Authentication data is hardcoded under VCS (BP29) ↑ ↑
Repository Pipeline related resources are not versioned (R10) ↑ ↑
Repository Generated artifacts are versioned, while they should not (R8) ↓
Short-Lived Branches Divergent branches (R7) ↑
Single Command Environment Some pipeline’s tasks are started manually (BP13) –
Single Path to Production Pipeline related resources are not versioned (R10) ↑ ↑
Build Threshold A build is succeeded when a task is failed or an error is thrown

(BP16)
↑ ↑

Build Threshold Coverage thresholds are too high (Q4) ↓
Build Threshold Coverage thresholds are fixed on what reached in previous builds

(Q3)
↓

Commit Often 7

Continuous Feedback Missing notification mechanism (BP23) ↑ ↑
Continuous Feedback Failures notif. only sent to teams that explicitly subscribed (BP22) ↓
Continuous Feedback Issue notifications are ignored (C6) ↑ ↑
Continuous Integration Use of nightly builds (BP14) ↑
Continuous Integration Poor build triggering strategy (BP11) ↑
Continuous Integration Only the last commit is built, aborting absolete and queued builds

(BP6)
↓ ↓

Stop The Line Build failures are not fixed immediately giving priority to other
changes (C5)

↑ ↑

Independent Build Build scripts are highly dependent upon the IDE (BM2) ↑ ↑
Visible Dashboards Failures notif. only sent to teams that explicitly subscribed (BP22) ↓
Automate Tests Testing is not fully automated (Q8) ↑ ↑
Isolate Test Data Production resources are used for testing purposes (Q7) ↑ ↑
Parallel Tests Independent build jobs are not executed in parallel (BP5) ↓ ↓
Stub Systems Production resources are used for testing purposes (Q7) ↑ ↑
Deployment Pipeline Some pipelines’ tasks are started manually (BP13) –
Value-Stream Map 7

Dependency Management Dependency management is not used (BP18) ↑
Common Language 7

Externalize Configuration Environment variables are not used at all (BM3) ↓
Externalize Configuration Build configurations are cloned in different environments (BM4) ↓
Externalize Configuration Authentication data is hardcoded (in clear) under VCS (BP29) ↑ ↑
Fail Fast Wide and incohesive jobs are used (BP3) ↓
Fast Builds Build time for the “commit stage” overcomes the 10-minutes rule

(BP27)
↑ ↑

Fast Builds Tasks are not properly distributed among different build stages
(BP9)

↓ ↓

Scripted Deployment Some pipelines’ tasks are started manually (BP13) –
Unified Deployment Build configurations are cloned in different environments (BM4) ↓
Binary Integrity Missing artifacts’ repository (D2) ↑
Canary Release 7

Blue-Green Deployments 7

Dark Launching 7

Rollback Release Missing rollback strategy (D3) ↑ ↑
Self-Service Deployment Developers and operators are kept as separate roles (C3) ↑
Automate Provisioning Developers do not have a complete control of the environment (C4) ↑
Behavior-Driven Monitoring Missing smoke test, set of tests to verify the testability of the build

(BM7)
↑

Immune Systems 7

Lockdown Environments Developers do not have a complete control of the environment (C4) ↑
Production-Like Environments Lack of testing in a production-like environment (Q1) ↑ ↑
Transient Environments 7

Database Sandbox Lack of testing in a production-like environment (Q1) ↑ ↑
Database Sandbox Inappropriate build environment clean-up strategy (BP1) ↑
Decouple Database 7

Database Upgrade Some pipelines’ tasks are started manually (BP13) –
Scripted Database Pipeline related resources are not versioned (R10) ↑ ↑
Branch by Abstraction Number of branches do not fit the project needs/characteristics

(R4)
↓

Toogle Features Feature branches are used instead of feature toggles (R6) ↑
Delivery Retrospective Developers and operators are kept as separate roles (C3) ↑
Cross-Functional Teams Developers and operators are kept as separate roles (C3) ↑
Root-Cause Analysis 7
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1. “Canary Release”, where the anti-pattern occurs when “software is released
to all users at once”;

2. “Dark Launching”, where the anti-pattern occurs when “software is deployed
regardless of the number of active users”;

3. “Value-Stream Map”, where the anti-pattern relates to “separately defined
processes and views of the check in to release process”;

4. “Common Language”, where the anti-pattern occurs when “each team uses
a different language making it difficult for anyone to modify the delivery
system”.

Also, our CI catalog does not cover specific Duvall patterns mainly related to
deployment and delivery activities, namely:

1. “Blue-Green Deployments”, highlighting the need for deploying software to a
non-production environment while production continues to run;

2. “Immune System”, that emphasizes the need for deploying software one
instance at a time while conducting Behavior-Driven Monitoring;

3. “Decouple Database”, aimed at ensuring that the application is backward and
forward compatible with the database giving the possibility of independent
deployment activities.

Finally, our catalog does not cover the (i) “Transient Environments”, where
the anti-pattern occurs when environments are fixed or pre-determined, and (ii)
“Root-Cause Analysis”, where the anti-pattern occurs when developers “accept the
symptom as the root cause of the problem”.

From a different perspective, looking at the second column in Table 3.4-
Table 3.10, only 35 of our CI bad smells are covered by Duvall, while 44 are
completely uncovered. More specifically, our catalog includes specific CI bad smells
related to (i) the way the CI infrastructure is chosen and organized, as well as
(ii) how a build process is organized and configured, and (iii) testing and quality
checks.
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Focusing on the testing phase (and therefore on bad smells we categorized
under Quality Assurance), it is possible to state that, even if Duvall’s catalog has
a category aimed to cover problems occurred in doing testing activities consisting
of four patterns/anti-patterns fully covered by our catalog, we provide other six
further bad smells not contemplated by Duvall’s catalog. Specifically, two of them
— “Missing tests on feature branches” (Q5) and “All permutations of feature toggles
are tested” (Q6) — focus on the way a testing strategy is adopted in the CI pipeline.
Their consequence is a negative impact on the build duration, also preventing the
availability of fast feedback.

Other two CI bad smells not covered by Duvall, namely “Bad choice on the
subset of test cases to run on the CI server” (Q10) and “Failed tests are re-executed
in the same build” (Q11), deal with the way in which test cases are executed in
the CI pipeline.

Looking at the second column in Table 3.8, we can notice that three CI bad
smells related to the definition/usage of quality gates are not mapped onto Duvall’s
catalog, and, at the same time, are highly relevant for our survey participants. More
in detail, the “Quality gates are defined without developers considering only what
dictated by the customer” (Q12) highlights that developers need to be involved in
the definition of the quality gates, since customers do not have enough knowledge of
software development and implementation details. The “Use quality gates in order
to monitor the activity of specific developers without using them for measuring the
overall software quality” (Q13), instead, emphasizes the fact that the overall team
spirit will be negatively impacted in presence of monitoring activities. Finally, the
“Unnecessary static analysis checks are included in the build process” (Q14) may
unnecessarily slow down the build duration as well as may decrease the developers’
productivity, since developers will waste their time trying to fix violated checks
that do not completely fit the need of their organization.

In the following, we discuss some examples of CI bad smells (partially) contra-
dicting common wisdom and/or outlining trade-off situations for developers.

Nightly builds are a particular type of scheduled builds that are usually per-
formed overnight (i.e., out of working hours). Duvall reports their usage as an
anti-pattern corresponding to the “Continuous Integration” pattern (“Scheduled
builds, nightly builds, building periodically, building exclusively on developer’s
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machines, not building at all”). Indeed, Duvall highlights as good practice the
need for building and testing software with every change committed to a project
VCS [27].

In our catalog, the CI bad smell “The project only uses nightly builds when
having multiple builds per day is feasible” (BP14) is relevant for 48% of our
respondents. Differently from Duvall, we do not consider nightly builds as something
to avoid; instead, we foresee caution in using them. On the one side, to follow
the “Fast Builds” rule it is important to execute time-consuming tasks over the
night and not during the regular builds. On the other side, if developers schedule
the whole set of tasks during regular builds, the usage of nightly builds could be
redundant. The above bad smell is discussed in many SO posts related to the build
duration. More in detail, a SO discussion stated: “. . . on each commit, I would
like to run a smaller test suite, and then nightly it should run a full regression test
suite . . . which is much more involved and can run for hours . . . ”

Having an adequate branching strategy is another key point in the CI process.
Our catalog provides four different CI bad smells dealing with the adoption of a
poor branch management strategy in the CI process. Among them, the “Feature
branches are used instead of feature toggles” (R6) and “Number of branches do
not fit the project needs/characteristics” (R4) identify situations in which the
right decision depends upon the organization needs. More specifically, the bad
smell (R6) discourages the use of branches when developing features, and it is in
agreement with what stated by Duvall. However, a recent study by Rahman et al.
[97] found that feature toggles, despite their advantages, could introduce technical
debt involving maintenance effort for developers. To this regard, we found quite
controversial opinions in SO posts. For example, in one SO post, the preferred
choice is the feature toggles even if “. . . requires very strict discipline as broke/dark
code is making it to production”. The discussion ends with the following suggestion:
“I do not believe in a better choice in all the cases”.

Furthermore, the “Number of branches do not fit the project needs/cha-
racteristics” (R4) bad smell, mapped onto Duvall’s anti-pattern “Multiple branches
per project” (related to the “Mainline” pattern), occurs when a project has several
branches that might not be needed. While Duvall indicates as an anti-pattern the
“Feature Branching”, our CI bad smell suggests the usage of a proper number of
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branches according to a well-defined strategy. An interviewee of our study agrees
with the usage of different branches evolving in parallel (“We use a branch for
each service and usually 3/4 developers work on it. There is a straight separation
between each branch.”), while some SO discussions discourage to exceed in the
number of branches: “You must have your changes included in the main trunk so
you can reduce the number of conflicts related to merge operations”.

Since 39 patterns/anti-patterns defined by Duvall are covered by 35 CI bad
smells of our catalog, it is interesting to look at their perceived relevance according
to our survey respondents. More specifically, we discuss some cases considered
highly relevant as well as some cases considered as less relevant. On the one side,
unsurprisingly, the “Protected Configuration” pattern (the anti-pattern mentions
“open text passwords and/or single machine or share”) mapped onto our “Authenti-
cation data is hardcoded (in clear) under VCS” bad smell (BP29), is considered
still relevant by our survey participants since it is mainly related to security issues.
Also for “Single Path to Production” pattern defined by Duvall, mapped onto our
“Pipeline related resources are not versioned” bad smell (R10), the relevance is high
since that this bad smell negatively impacts the reproducibility of the overall build
process. On the other side, the “Parallel Tests” pattern is felt as less relevant by
our survey respondents. Developers, at least for builds that are not executed in
the commit stage, do not account for the build duration. Indeed, the main goal of
parallelizing independent tasks is to reduce the overall build time.

Finally, Duvall considers as an anti-pattern the execution of dependent build
jobs/tests in parallel. This bad smell has been found in many SO discussions,
however, as already detailed in Section 3.3.2, we discarded it because we consider
this to be a bug rather than a bad smell.

3.5 Threats to Validity

Threats to construct validity relate to the relationship between theory and experi-
mentation. These are mainly due to imprecision in our measurements. We relied
on SO tags to filter SO discussions. While it is possible that we could have missed
some relevant posts because their tags were not directly related to CI, we at least
made sure to pick all tags of interest by performing a manual, exhaustive analysis
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of all SO tags. Concerning the protocol used for the semi-structured interviews, it
is possible that the incompleteness of our interview structure could have lead to
some CI bad smells. However, to mitigate this threat, the questions being asked in
the last part of our interview took into account what we learned from the existing
literature [25, 27, 47]. Concerning the way we collected bad practices relevance
through the survey, we used a 5-level Likert scale [83] to collect the perceived
relevance of each CI practice. To limit random answers, we added a “Don’t know”
option and the opportunity to explain the answers with a free comment field.

Threats to internal validity are related to confounding factors, internal to the
study, that can affect our results. Internal validity threats can, in particular, affect
the extent to which the protocol followed to build the catalog could have influenced
our results. As detailed in Section 3.3.2, we used different countermeasures to limit
the influence of our subjectiveness. As for the analysis of SO posts, it was not
possible to afford two independent taggers per post. However, the independent
re-check on the “Yes”/“Maybe” limited the false positives, though could not
mitigate possible false negatives. The mapping onto Duvall’s anti-patterns and the
validation of the catalog were performed by two independent evaluators, inter-rater
agreement was computed, assignment conflicts were resolved through a discussion,
and inconsistent cases were re-coded again to improve the inter-rater agreement. For
what concerns the creation of the catalog itself, we interleaved multiple iterations
done by discussions of comments each author raised during each iteration.

Threats to conclusion validity concern the relationship between theory and
outcome, and are mainly related to the extent to which the produced catalog can
be considered exhaustive enough to capture CI bad practices. While we are aware
that there might be CI bad smells we did not consider, to mitigate the threat and
verify saturation, we validated a statistically significant sample of SO posts not
used when building the catalog.

Threats to external validity concern the generalizability of our findings. These
are mainly due to (i) the choice of SO as a source for mining CI-related discussions,
and (ii) the set of interviewed people. Concerning SO, it is the most widely used
development discussion forum to date. Although specific forums for CI exist (e.g.,
DZone6), such forums are more portals where white papers (e.g., the one with

6https://dzone.com

https://dzone.com
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Duvall’s anti-patterns [27]) are posted rather than a Question & Answer (Q&A)
forum. The number of participants (and companies) to the interviews and survey
is admittedly, limited. At the same time, the companies are pretty diverse in terms
of domain and size, and the interviewed/surveyed people always had several years
of experience. Nevertheless, we could still have missed some relevant problems, e.g.,
we have shown (Section 3.4.3) that eight of Duvall’s anti-patterns did not emerge
from our study.

3.6 Implications

This section discusses the implications of the identified CI bad smells for practi-
tioners, researchers, and educators.

3.6.1 Implications for Practitioners

In the following, we discuss implications for practitioners, which could either be
developers just using the CI pipeline, but also developers having the responsibility
and rights to configure it.

In this context, the aim of the catalog is providing developers with concrete
misuses of the CI pipeline. These misuses can occur at different stages, including:
(i) setting up and configuring the Software Configuration Management (SCM)
infrastructure, as well as the CI infrastructure and tooling, and (ii) performing
daily activities in the context of a CI pipeline, which translates into creating and
synchronizing/merging branches, pushing changes, interpreting and leveraging
results of the CI builds to improve software quality.

In the following, we report some scenarios where the catalog of CI bad smells
could help developers.

Favor Specific, Portable Tools over Hacking One of the CI bad smells we
identified is related to a sub-optimal selection of tools composing the CI pipeline.
Specifically, the adoption of a tool that does not provide the features needed

by developers may cause delays or, even worse, force the adoption of “hacking
solutions”, e.g., custom shell scripts. While such scripts can represent a quick-and-
dirty solution for the immediate, in the long term they can exhibit maintainability
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issues, or even introduce portability problems on different machines. This CI bad
smell was pointed out by one of our interviewees, saying that they “replaced the
old scripts with Jenkins”. Our catalog includes the bad smell “Use shell scripts
for a task for which there is a suitable plugin available” (I7) that covers these
aspects. Moreover, developers should pay attention to avoid different versions of
tools conflicting with each other, as indicated by the bad smell “Different releases
of tools/plugins versions are installed on the same server” (I4).

Do not Use Out-of-the-Box Tools, nor Listen Customers Only Even
when suitable tools are chosen, such tools have to be properly configured. One
of our bad smells is “External tools are used with their default configurations”
(I3). Moreover, in this context, a relevant and frequent bad habit is to not involve
developers in the definition of the quality gates, but just listen to customers’
requirements. Indeed, as reported by an interviewee, the “client dictates the quality
gates . . . [they] have only to meet these gates” even though they do not have enough
expertise or knowledge about the software development skills. For those reasons,
our catalog features the bad smell “Quality gates are defined without developers,
considering only what dictated by the customers” (Q12) that reminds how quality
gates that have been established without developers could increase the number of
irrelevant warnings and slow down the entire CI process.

Do not Ignore nor Hide Build FailuresWhen working with the CI pipeline,
it is possible that developers do not give adequate priority and importance to
warnings outputted in build logs, or even worse, to broken builds. As a consequence,
they tend to hide actual problems by just disabling failing tests or quality checks
instead of solving them. In other cases, developers might improperly use the
features provided by the whole environment or by specific toolkits. A concrete
example is reported in a SO post7 in which a user highlighted that there are cases
in which developers focus more on “. . . keep the build passing as opposed to ensuring
we have high quality software”. The latter translates into “. . . comment[ing] out the
tests to make the build pass” resulting in having a passed build while the overall
software quality is going down.

Our catalog features the bad smell “Pipeline steps/stages are skipped arbitrarily”
(BP8), pointing out that it is important to not skip pipeline tasks only to have a

7https://stackoverflow.com/questions/214695/

https://stackoverflow.com/questions/214695/
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passed build. Also, the Culture category features bad smells occurring when “Build
failures are not fixed immediately giving priority to other changes” (C5), or “Issue
notifications are ignored” (C6).

3.6.2 Implications for Researchers

Development of Automated CI Bad Smell Detectors Researchers can use
the catalog as a starting point to develop (semi) automated recommender systems
able to identify CI bad smells by mining or monitoring VCS data, CI build logs,
configuration files, and other artifacts. A CI bad-smell detector could, for example,
identify poor choices in build or configuration files by analyzing the build scripts’
complexity, length, and readability, or the presence of hard-coded configuration
parameters. Then, the detector can highlight the bad smells, and possibly, provide
suggestions for refactoring them/making them easier to read.

Also, a CI bad-smell recommender could go beyond that, and “observe” the ac-
tivity carried out by developers through the pipeline, including branching strategies,
push/pull frequency, distribution of build failures, fix time etc.. As an example,
the CI bad smell “Pipeline steps/stages are skipped arbitrarily” (BP8) could be
detected by analyzing the build history of the project, and detecting cases where a
build that failed because of test cases becomes successful again without changes
to the production code but, instead, because test cases were commented out or
disabled.

Support for Failure Analysis A key element for quick fixing a build is the
capability of developers to properly analyze the output of a build. Our CI bad
smells provide indications of what should be avoided when configuring the build log
(e.g., “Build reports contain verbose, irrelevant information” (BP24) or “The output
of different build tasks are mixed in the build output” (BP21)) or other notification
mechanisms (e.g., “Failures notifications are only sent to teams/developers that
explicitly subscribed” (BP22)). Also, techniques similar to those used to summarize
release notes [78] or bug reports [99] could be used to extract and summarize
relevant information from verbose and complex build logs.

Keep the Context into Account When building tools to identify CI bad
smells, researchers should take into account the developers’ context and, if possible,
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their feedback to past recommendations to properly tune the recommender and
avoid overloading developers with irrelevant suggestions. This could be achieved by
collecting a set of preferences about the CI practices adopted in one organization
(e.g., when to open a branch, push/pull practices, testing, and static analysis needs),
by also observing the past history of developers’ activity. For example, self-admitted
technical debt [89] can be used to learn bad smells relevant to developers, and
consequently help to configure static analysis tools properly.

Expand the Catalog Finally, having provided a methodology to infer bad
smells and a full study replication package, the catalog can be extended through
further bad smells other researchers might discover, and replication studies on
bad-smell relevance can confirm or contradict the results of our survey.

3.6.3 Implications for Educators

Teach CI by Providing Examples of What not to Do The proposed catalog
can be valuable for educators introducing CI/CD principles in software engineering
curricula. A typical course about CI would introduce the topic, illustrate the
main claimed advantages of CI, explain the technologies that can be used, and,
importantly, provide principles to properly set up and use the CI pipeline. So far,
such principles are typically being taught mainly based on the content of known
books [25, 47] or by using catalogs/white-papers reflecting existing knowledge in
this area coming from the available literature.

With the proposed catalog, it would be possible to explain CI misuses, which
are based on specific experiences occurred to developers and discussed in SO or
our interviews. In other words, this could enable the introduction of CI using a
“learn by example” methodology, illustrating practices that should be avoided. Also,
when applying CI in their homeworks, students can be thought to monitor the
occurrence of CI bad smells, open issues to this regard, and solve them whenever
possible.

Teach CI Culture, not Just Technology Given the importance provided
by our survey respondents to the Culture-related bad smells, it should be avoided to
introduce technological content about CI without fostering the right understanding
of the metaphor and its related processes.
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3.7 Conclusions and Future Work

The adoption of Continuous Integration and Delivery (CI/CD) as development
practice is increasing. Studies conducted in industrial organizations and open
source projects highlight benefits of CI/CD, including increased developer produc-
tivity, software quality, and reliability [17, 46, 124]. Despite those advantages, the
introduction of CI/CD in well-defined development contexts is still challenging, as
also highlighted in previous work [27, 45, 82].

This paper empirically investigates, by analyzing over 2,300 SO discussions
and by interviewing 13 industry experts, on bad practices developers encounter
when adopting CI. As a result of the study, we compiled a catalog of 79 CI bad
smells organized into 7 categories. The catalog has been validated through a survey
involving 26 professional developers, indicating their perceived relevance of the 79
bad smells.

While a catalog of CI patterns and anti-patterns exists [27], this is, to the best
of our knowledge, the first catalog empirically derived from concrete problems
discussed in SO or highlighted by interviewed experts, and following a replicable
methodology.

As we have shown in Section 3.4.3, while in some cases our results confirm what
known from the existing literature, there are quite a few controversial cases, such
as the appropriate balancing in the usage of nightly builds or feature branches.
Moreover, while our catalog does not cover 11 of Duvall’s anti-patterns (though
covering all categories), there are 44 of our CI bad smells not covered by Duvall,
and they especially pertain to the CI infrastructure, the build configuration, as well
as testing and quality checks. We also discuss cases in which the two catalogs agree
and disagree, also highlighting examples of Duvall’s anti-patterns not perceived as
important by our survey participants.

The catalog resulting from our study has implications for different stakeholders.
Practitioners can use it to avoid/recognize the application of bad practices degrading
the overall build process. Also, the catalog could be of benefit for educators
introducing CI in software engineering curricula, and researchers interested in
conceiving CI bad smell detectors. Indeed, besides enlarging the study to different



3.7 Conclusions and Future Work 101

contexts, our future work is in the direction of building automated recommenders
to detect and possibly remove CI bad smells.

Interestingly, while some researchers previously investigated barriers towards
CI [45] and CD [82] adoption, the inferred bad practices indicate that some of those
issues still arise when the CI process has been adopted. They include, for example,
long in-the-loop feedback during development, or network configuration issues.

Future work should further analyze the observed bad smells through other kinds
of empirical studies, e.g., in-field studies conducted within companies.
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Abstract

Continuous Integration (CI) and Continuous Delivery (CD) are widespread in both
industrial and open-source software (OSS) projects. Recent research characterized
build failures in CI and identified factors potentially correlated to them. However,
most observations and findings of previous work are exclusively based on OSS
projects or data from a single industrial organization. This paper provides a first
attempt to compare the CI processes and occurrences of build failures in 349
Java OSS projects and 418 projects from a financial organization, ING Nederland.
Through the analysis of 34,182 failing builds (26% of the total number of observed
builds), we derived a taxonomy of failures that affect the observed CI processes.
Using cluster analysis, we observed that in some cases OSS and ING projects share
similar build failure patterns (e.g., few compilation failures as compared to frequent
testing failures), while in other cases completely different patterns emerge. In
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short, we explain how OSS and ING CI processes exhibit commonalities, yet are
substantially different in their design and in the failures they report.

4.1 Introduction

Continuous Delivery (CD) is a software engineering practice in which development
teams build and deliver new (incremental) versions of a software system in a
very short period of time, e.g., a week, a few days, and in extreme cases a few
hours [47]. CD advocates claim that the practice reduces the release cycle time
(i.e., time required for conceiving a change, implementing it, and getting feedback)
and improves overall developer and customer satisfaction [16]. An essential part of
a CD process is Continuous Integration (CI), where an automated build process is
enacted on dedicated server machines, leading to multiple integrations and releases
per day [10, 25, 31, 112]. One major purpose of CI is to help developers detect
integration errors as early as possible. This can be achieved by running testing
and analysis tools, reducing the cost and risk of delivering defective changes [25].
Other collateral positive effects introduced by CI in industrial environments are the
improvement in developer communication [23] and the increase of their productiv-
ity [75]. Consequently, CI has become increasingly popular in software development
of both, industrial and OSS projects [46, 112].

At the same time, the study of CI builds has also become a frequent research
topic in academic literature. Miller [75] studied a Web Service project in Microsoft
and, by observing 69 failed builds, mainly found failures related to code analysis
tools (about 40%), but also to unit tests, server, and compilation errors. The
latter have been investigated in depth by Seo et al. [107] in a study at Google.
Recently, Rausch et al. [100] studied the Travis CI builds of selected OSS projects,
and identified correlations between project and process metrics and broken builds.
Other works focused on test failures [10] and on the use of static analysis tools [142].
However, no previous research provides a broad categorization of build failures and
compared their occurrences between industry and OSS.

This paper studies build failures in 418 projects (mostly Java-based) from a
large financial organization, ING Nederland (referred to as ING), as well as in
349 Java-based open source software (OSS) hosted on GitHub and using Travis
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CI. The purpose of the study is to compare the outcome of CI in OSS and in an
industrial organization in the financial domain, and to understand commonalities
and differences. As previous work by Ståhl et al. [113] suggested that the build
process in industry varies substantially, we aim to understand the differences (also
in terms of build failure distributions) between OSS and one industrial case. In
total we analyzed 3,390 failed builds from ING and 30,792 failed builds from OSS
projects. Based on this sample, we address the following research questions:

RQ1: What types of failures affect builds of OSS and ING projects?

This research question aims to understand the nature of errors occurring
during the build stage in ING and the analyzed OSS projects. We use an
open coding procedure to define a comprehensive taxonomy of CI build errors.
The resulting taxonomy is made up of 20 categories, and deals not only with
the usual activities related to compilation, testing, and static analysis, but
also with failures related to packaging, release preparation, deployment, or
documentation. Overall, the taxonomy covers the entire CI lifecycle. We
then study build failures along the taxonomy, addressing our second research
question:

RQ2: How frequent are the different types of build failures in the observed OSS
and ING projects?

Given the catalog of build failures produced as output of RQ1, we then
analyze and compare the percentages of build failures of different types for
both, ING and OSS projects. Furthermore, based on these percentages,
we cluster projects and discuss characteristics of each cluster, observing in
particular whether different clusters contain ING projects only, OSS projects
only, or a mix. Finally, we investigate the presence of build failure patterns
shared by ING and OSS projects in the various clusters.

Our study shows that ING and OSS projects share important commonalities.
For example, both exhibit a relatively low percentage of compilation failures, and,
instead, a high percentage of testing failures. However, while unit testing failures
are common in OSS projects (as also discussed in [84]), ING projects have a much
higher frequency of integration test failures. ING projects also exhibit a high
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percentage of build failures related to release preparation, as well as packaging
and deployment errors. We also found that projects cluster together based on
the predominance of build failure types, and some clusters, e.g., related to release
preparation or unit testing, only contain or are predominated by ING or OSS
projects respectively. In summary, while the behavior of CI in OSS and closed
source exhibits some commonalities, closed source has some peculiarities related
to how certain activities, such as testing and analysis, are performed, and how
software is released and deployed.

4.2 Study Design and Planning

The goal of the study is to investigate the types of build failures that occur in the
analyzed OSS and ING projects, how frequently they occur, and to understand the
extent to which these failure frequencies differ in the analyzed industrial and OSS
projects. This analysis has the purpose of understanding the commonalities and
differences in the CI process of OSS and of an industrial environment (ING), at
least from what one can observe from build failures and from the knowledge of the
adopted CI infrastructure.

4.2.1 Study Context

The study context consists of build failure data from 418 projects (mostly Java-
based, as declared by the organization) in ING and 349 Java-based OSS projects
hosted on GitHub.

In both, ING and OSS, the CI process is triggered when a developer pushes
a change to the Git repository. The code change is detected by the CI server
(Jenkins1 in ING and Travis CI2 in OSS) and the build stage is started. The
outcome of the build process is either a build failure or a build success.

In ING, if a triggered build succeeds, the generated artifacts of the new version
are deployed to a remote server that simulates different environments (i.e., testing,
production) to perform further activities (e.g., load, security testing). Indeed ING
adopts a well-defined CD pipeline (illustrated in a survey conducted in ING [135])

1https://jenkins.io 2https://travis-ci.org

https://jenkins.io
https://travis-ci.org
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where the build is only one node of the entire process of an application’s release.
Some external tools are usually plugged into the build process to augment the
actions performed at some steps. For example, SonarQube3 is used as source code
quality inspector, sometimes complemented by PMD4 and Checkstyle.5

In our study, we analyzed 12,871 builds belonging to 418 different Maven
projects in ING, and mined data from 4 different build servers. Specifically, we
extracted, for each project, the Maven logs related to the failed builds that occurred
between March 21st, 2014 and October 1st, 2015. The resulting total number of
Maven build failures is 3,390 (≈26% of builds). Due to restrictive security policies
in the financial domain, the Maven logs were the only resources we could access
during the study. Hence, we did not have access to any other resource that would
be valuable in order to investigate the nature of build failures in more depth, e.g.,
data from versioning systems, testing or detailed outputs of static analysis tools
(except the data printed to build logs). Therefore, our observations are limited to
the information available in build logs.

As for OSS, we selected 349 projects from the TravisTorrent dataset [11], which
contains build failure data from GitHub projects using Travis CI.6 We restricted
our analysis to all projects of the TravisTorrent dataset using Maven (in order to
be consistent with ING projects) and mainly written in Java (according to the
dominant repository language reported by GitHub). In addition, we only considered
projects having at least one failing build. In total, the 349 projects underwent
116,741 builds, of which 30,792 (≈26%) failed. It is interesting to notice how the
percentage of build failures is approximately the same in OSS and ING.

4.2.2 Data Extraction Approach

Similarly to the work by Désarmeaux et al. [21] we focused our analysis on Maven
projects and their related build logs. Differently from the work by Désarmeaux
et al., we did not analyze build scripts as they were not provided by the involved
organization and thus we did not perform a more fine-grained analysis of the kinds
of failures.

3https://www.sonarqube.org 4https://pmd.github.io
5https://checkstyle.sourceforge.io 6Data accessed on 27/10/2016

https://www.sonarqube.org
https://pmd.github.io
https://checkstyle.sourceforge.io
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To extract build failure data for ING, we used the Jenkins REST APIs, which
retrieved the log associated to each build and allowed us to reconstruct the history
of a job in terms of build failures and build successes. To extract build failure data
for OSS, we started from the information contained in the TravisTorrent database.
Then, we downloaded build logs for each job IDs related to a build ID labelled as
failed, by means of the Travis APIs.

Subsequently, we extracted the error messages contained in each log using a
regular expression, e.g., the lines that contain the word “ERROR”, and used them to
define our Build Failure Catalog.

4.2.3 Definition of the Build Failure Catalog

Our process for defining the Build Failure Catalog consists of five steps:
Keyword Identification. In this step, two authors mined the most relevant

keywords associated with an error section. In Maven, each build fails because
of the failure of a specific step (i.e., a goal). As outcome of this failure, an er-
ror section is generated in the build log. From each error section, we extracted
as keywords only the phrase related to the failed goals (generated by Maven),
as well as sentences generated by Maven plugins, making sure of their stability
(i.e., no changes in the structure of error messages) during the period of obser-
vation. For example, if an error during the execution of the “compilation” goal
(e.g.,“org.apache.maven.plugins:maven-compiler-plugin:compile”) causes a build
failure, the goal name is assumed as keyword. In other cases, when there is no
evidence of failed goals in the build logs, we mined other sentences (e.g.,“Could
not resolve dependencies” in case of missing Maven artifacts).

Keyword Grouping. Two of the authors (hereby referred to as A and B)
produced a first grouping of keywords into categories. For this step, we used the
Maven documentation7 and the documentation of the respective plugins in order
to understand the keywords. Then, two other authors (C and D) reviewed the
first categorization and made change suggestions. This process will be explained in
more detail in Section 4.3.1. Finally, A and B checked the resulting catalog again,
which led to convergence.

7https://maven.apache.org/guides/index.html

https://maven.apache.org/guides/index.html
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Build Log Classification. The build logs were automatically classified ac-
cording to the previously defined catalog. Based on the matched keywords, each
build log was assigned to zero, one, or more categories.

Result Validation. After the automatic classification, a second, manual
classification of a statistically significant sample has been performed to determine
the error margin introduced by the automatic classification. Each sample has
been validated by two authors and the reliability of the validation was computed
using the Cohen k inter-rater agreement statistic [18]. After that, we discussed
cases in which the raters disagreed in the classification and in which there was a
mismatching with the automatic classification.

Catalog Refinement. If, as a result of the manual validation, it turned out
that the first automatic classification was erroneous, the manual validation helped
to further refine the categories. When categories were refined, a new validation
(limited to these categories only) was performed, if necessary.

This five-step procedure was first applied to ING build failures and subsequently
to the OSS data set. This means that the two inspectors, starting from the
taxonomy derived from the analysis of ING build failures, extended, if necessary,
the taxonomy with categories specific to OSS. Regarding the validation of the
automatic classification, for ING data we randomly extracted for each identified
category a sample size of 764 build failures considering a confidence level of 95% and
a confidence interval of ±10%. For OSS projects we did not perform a new stratified
sampling. Instead, we conducted a complementary validation. We extracted a
sample of 377 build failures (which is significant with 95% confidence level and
±5% of confidence interval), making sure the sample contains a number of failures,
for each category, proportional to the distribution of failures across categories.

4.2.4 Analysis of Build Failure Proportions

In order to investigate the extent to which proportions of build failures of different
types vary among ING and OSS, we perform two types of analyses. First, we
statistically compared and discussed the frequency of build failures for different
types among ING and OSS projects. Then, we used the relative frequencies of
different types of failures to cluster projects exhibiting similar distributions of build
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failures. We used k-means clustering [42] (the kmeans function available in the R
[90] stats package). The k-means function requires to upfront specify the number
of clusters k in which items (in our case projects) should be grouped. To determine
a suitable value of k, we plotted the silhouette statistics [54] for different values of
k. Given a document di belonging to a cluster C and, a(di) the maximum distance
of di from the cluster’s centroid, and b(di) from the centroids of other clusters, the
silhouette for di is given by

S(di) = b(di)− a(di)
max(a(di), b(di))

and the overall silhouette of a clustering is given by the mean silhouette across all
documents (all projects in our case). Typically, the optimal number of clusters
corresponds to the maximum value of the silhouette.

After this clustering step, we analyzed the clusters’ content, looking in particular
at the extent to which clustering separates ING projects from OSS projects and
the occurrences of particular failures patterns.

4.3 Study Results

This section reports the results of the study we conducted for addressing our
research questions.

4.3.1 What Types of Build Failures Affect Builds of OSS and
ING Projects?

In the following, we first report how we obtained the Build Failure Catalog, and
then discuss the catalog categories in detail.

From Maven Phases to the Build Failure Catalog

With the aim of defining a complete and possibly generalizable Build Failure Catalog,
we firstly attempted to group build failures into categories closely following the
Maven lifecycle phases, i.e., validate, process-resources, compile, test-compile, test,
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package, integration-test, verify, install, and deploy. When a build failure could
not be mapped onto specific Maven phases (e.g., those related to non-functional
testing), we created a new category.

A first result was made up of 16 categories, specifically (i) a validation category;
(ii) a pre-processing category; (iii) three compilation categories related to compiling
production code, compiling test code, and missing dependencies; (iv) three separate
categories for unit testing, integration testing, and non-functional testing; (v) a
static analysis category; (vi) a packaging category; (vii) an installation category;
(viii) a deployment category; (ix) a documentation category; and (x) three cross-
cutting (i.e., placeable in more than one phase) categories related to testing (where
mapping to specific testing activities was not possible), release preparation, and
other plugins.

After the first categorization, subsequent iterations produced the following
changes:

• Dependencies were initially mapped to Compilation. Then, we realized that
it is not possible to generally map dependencies to the compilation phase
(i.e., dependencies related issues impact on several phases). Therefore, we
created a crosscutting category for Dependencies.

• Some tools, such as Grunt, Cargo, and MojoHaus, were initially grouped as
Other Plugins. Then, we decided that, due to the nature of the tasks they
perform (e.g., allowing the execution of external commands), it was more
appropriate to group them together with Ant as External Tasks.

• The goal “prepare” of the maven-release-plugin was initially put into Valida-
tion. However, we realized that it is not bound exclusively to the “validate”
phase, but it covers all phases prior “deploy”. Therefore, we placed this goal
into the Release Preparation category.

• The “installation” phase was considered as a sort of “local” deploy, therefore
we created a category named Deployment with two sub-categories related to
Local Deployment and Remote Deployment.

• We decided to keep Clean separate from Validation, as Maven separates the
cleaning of all resources generated by the previous build from the default
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lifecycle. Instead, as Maven provides a dedicated clean lifecycle, we created a
specific Clean category.

• For some goals (e.g., “migrate” of org.flywaydb:flyway-maven-plugin) we
decided to create a category Support, as they have a supporting nature for
the build process. Then we grouped those goals supporting a specific phase
of the build into a subcategory of the related category.

• The Static Analysis category was renamed into Code Analysis and split in
two sub-categories, namely Static Code Analysis and Dynamic Code Analysis.

• We created a category Testing hosting test execution involving Unit testing,
Integration testing, and Non-functional testing. Due to missing goals we were
not able to classify some failed tests into one of these three sub-categories,
thus we assigned them to the crosscutting sub-category Crosscutting.

Once we had adapted our initial categorization as described, we automatically
classified the logs, sampled the logs (764 ING and 377 OSS) to be manually validated,
and proceeded with the validation. The validation of ING build failures was
completed with an inter-rater agreement of k = 0.8 (strong agreement) and of OSS
build failures with k = 0.62 (again, strong agreement). It is particularly important
to discuss the 51 cases (6.7%) for which there was a consistent disagreement with
the automatic categorization of ING builds. This was related to failures raised by
the org.apache.maven.plugins:maven-surefire-plugin, initially assigned to the Unit
Testing category. However, we found that the plugin name was usually followed
by a label “(default-test)” or “(integration-testing)”, the former suggesting it was
indeed unit testing, while the latter pertaining to integration testing. Therefore, we
decided to rematch the latter. Since this was just a matter of refining the regular
expression, a new validation of the Unit Testing and Integration Testing was not
necessary, but this information was used in the classification of the OSS build
failures.

8http://www.ifi.uzh.ch/seal/people/vassallo/build_failures_catalog.pdf

http://www.ifi.uzh.ch/seal/people/vassallo/build_failures_catalog.pdf
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Table 4.1: Build failure categories
Category Subcategory Description
Clean Cleaning build artifacts
Validation Check on the project’s resources

Pre-Processing (Resources) Generation and processing of the
project’s resources

Compilation
Production Compilation of production code
Test Compilation of test code
Support Code manipulation & processing

Testing

Unit testing Running unit tests
Integration testing Running integration tests
Non-functional testing Running load Tests
Crosscutting* Crosscutting test failures

Packaging Packaging project artifacts

Code Analysis Static Code analysis (without executing it)
Dynamic Code analysis (by executing it)

Deployment Local Project’s artifacts installation
Remote Project’s artifacts deployment to

a remote repository

External Tasks Capability for calling other
environments

Documentation Documentation generation
and packaging

Release Preparation* Preparation for a release in SCM

Support* Database migration and
other activities

Dependencies* Project’s dependencies
resolution and management

The Build Failure Categories

Table 4.1 reports the final version of the catalog we devised. It is made up of 20
categories (including sub-categories) and based on 171 keywords.8 Crosscutting
categories are tagged with an asterisk, e.g., Dependencies*. In the following,
we will briefly describe each category, in terms of included goals/keywords and
corresponding standard Maven or new phase, with qualitative insights about the
logged errors.

Clean. This category includes builds failed while executing the Maven lifecycle
goal “org.apache.maven.plugins:maven-clean-plugin:clean”; it tries to remove all
files generated during the previous build.

Validation. Our validation category is mapped to the Maven validation
phase that aims to validate a project by verifying that all necessary information to
build it is both available and correct. Indeed, the goals included in this category
check Maven classpaths (the main purpose of “org.apache.maven.plugins:maven-
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enforcer-plugin:enforce”) or environment constraints, such as Maven and JDK
versions.

Pre-Processing. This category contains all failed goals related to the genera-
tion of additional resources typically included in the final package (corresponding
to Maven phases process-resources and generate-resources). For example, the goal
“org.apache.maven.plugins:maven-plugin-plugin:helpmojo” generates a “HelpMojo”
class, corresponding to an executable Maven goal used in the subsequent steps of
the build process. Other goals, such as “com.simpligility.maven.plugins:android-
maven-plugin:generate-sources”, generate source code (in this case R.java) based
on the resource configuration parameters.

Compilation. Build failures in this category are mainly caused by errors
during the compilation of the production and test code (respectively compile and
test-compile in the Maven lifecycle). This leads to two sub-categories: (i) failures
related to the compilation of production code, and (ii) failures related to the
compilation of test code.

Production. The compilation of production code can fail due to typical pro-
gramming errors that are detected by the compiler while running goals such as
“org.apache.maven.plugins:maven-compiler-plugin:compile”, but also because of
language constructs unsupported by the build environment.

Test. Test code compilation failures are similar to production code ones,
although we noticed many failures due to wrong exception handling in test code
(e.g., “org.apache.maven.plugins:maven-compiler-plugin:testCompile” failed because
“unreported exception must be caught or declared to be thrown”).

Support. In addition to the previous compilation sub-categories, we added
another one related to failures occurring during activities complementary to
standard compilation. Examples of these activities are represented by the goal
“org.bsc.maven:maven-processor-plugin:process” that processes annotations for jdk6,
or the goal “net.alchim31.maven:yuicompressor-maven-plugin:compress” that per-
forms a compression of static files.

Testing. This category includes the execution of unit, integration, and non-
functional system tests. Moreover, we identified multiple failed builds for which
we were not able to classify them into one of these three sub-categories, hence the
crosscutting category Crosscutting.
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Unit Testing. The Maven phase test directly corresponds to this category.
Builds fail while executing goals such as “org.apache.maven.plugins:maven-surefire-
plugin:test”. Those failures are related to the presence of failing test cases. Also
other issues raised, e.g., the goal execution fails with an error message that specifies
the presence of unit tests which invoke System.exit(), or a crashing virtual
machine.

Integration Testing. Integration test results are typically verified by means of
the Failsafe Maven plug-in, which has a goal “integration-test” producing the error
message “There are test failures” in case that tests fail. This category corresponds
to the Maven phases pre-integration-test and integration-test. Moreover, we found
that integration testing is often performed using the goal “test” of the Surefire
plugin, even if the latter is mainly intended to be used to execute unit tests.

Non-Functional System Testing. While there is no corresponding Maven phase,
the single failing goal in this category is “io.gatling:gatling-maven-plugin:execute”.
This goal launches Gatling, a load testing tool, that keeps track of load testing
results across builds. As Gatling accepts Scala code, some build failures have
occurred because of incompatibilities between Gatling and specific Scala versions,
e.g., Gatling 2.1 and Scala versions prior 2.11.

Crosscutting Tests. There are testing failures that we could not assign to a
specific category because builds ended without reporting the failed goal. The
reported message (“There are test failures”) highlights the presence of test failures
and is very similar to the one that occurred for unit and integration testing.
Moreover, such test failures could occur within various testing related phases of
the build process.

Code Analysis. Similar to Non-Functional System Testing, we could not
identify a Maven phase related to the failed goals of the Code Analysis category.
Failed goals in this category can be subdivided into Static and Dynamic.

Static. Static code analysis [9] within the build process is conducted by running
goals such as “org.codehaus.mojo:sonar-maven-plugin:sonar”, which launches the
analysis of source code metrics via SonarQube, and “org.codehaus.mojo:findbugs-
maven-plugin:findbugs”, which is used to inspect Java bytecode for occurrences of
bug patterns via FindBugs.
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Dynamic. Dynamic code analysis is performed by executing goals such as
“org.codehaus.mojo:cobertura-maven-plugin:instrument”, which instruments the
classes for the measurement of test coverage (with Cobertura).

Many goals included in the Code Analysis category failed because of (failed)
quality checks, or in case of SonarQube, because of connection timeouts, e.g.,
“server can not be reached”.

Packaging. This category concerns all the builds failed while bundling
the compiled code into a distributable format, such as a JAR, WAR, or EAR
(Maven prepare-package and package phases). This category includes goals such
as “org.apache.maven.plugins:maven-war-plugin:war”. There are several errors
underlying these failed goals, such as the presence of a wrong path pointing to
a descriptor file or non-existing files (e.g., “The specified web.xml file does not
exist”).

Deployment. We observed two types of deployment: local and remote.
Local. This sub-category is mainly related to the install phase of the standard

Maven lifecycle, in which the build adds artifacts to the local repository (e.g., by
“org.apache.maven.plugins:maven-install-plugin:install”). To this end, the build
process, using the information stored in the POM file, tries to determine the location
for the artifact within the local repository. Failures concern the impossibility to
find and parse the needed configuration data.

Remote. The sub-category Remote corresponds to the Maven phase deploy and
includes goals, e.g., “org.apache.maven.plugins:maven-deploy-plugin:deploy”, which
try to install artifacts in the remote repository. Failures are often due to wrong
server URLs and authentication credentials. Other cases include the unsuitability of
the specified repository for deployment of the artifact or a not-allowed redeployment
of the same artifact.

External Tasks. This category includes failures caused by the usage of external
tools scheduled to execute within the build process. Some failures are related to the
execution of Ant tasks (e.g., “org.apache.maven.plugins:maven-antrun-plugin:run”)
or SQL statements (e.g., “org.codehaus.mojo:sql-maven-plugin:execute”). We
also added goals to this category that have the task of manipulating appli-
cation containers and allowing the execution of external Java programs (e.g.,
“org.codehaus.mojo:exec-maven-plugin:exec”) from a POM file. Many errors re-
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ported by these goals are related to timeout problems (e.g., “Execution start-
container:start failed: Server did not start after 120000 milliseconds”), but there
are also failures related to erroneous environment specifications, e.g., wrong port
numbers.

Documentation. Documentation is mapped onto the phase site of the Maven
Site lifecyle. It concerns build failures occurring during the generation of docu-
mentation, e.g., using the Javadoc tool. Reasons for those failures include the
specification of wrong target directories, incompatibilities between the JDK and
the Javadoc generation tool, or syntax errors in the Javadoc comments. Moreover,
failures are caused by the inability to create an archive file from the previously
generated Javadocs (“Error while creating archive”).

Crosscutting Categories. We will now discuss failure categories that can
not be associated with one specific phase, but can rather be mapped onto several
phases.

Release Preparation. This category concerns failures occurring during the
preparation for the deployment of a packaged release. We included in this category
the goal “org.apache.maven.plugins:maven-release-plugin:prepare”, that is used to
(i) check the information regarding the current location of the project’s Source
Configuration Management (SCM) and whether (ii) there are no uncommitted
changes in the current workspace. There are several reasons for failures in these
tasks, including failed executions of SCM-related commands (e.g., Git commands),
or the presence of uncommitted changes. In many cases, failed builds simply report
the name of the failed goal without specifying additional information.

Support. Builds fail while executing tasks that are not scheduled to execute
within an usual build process. This category includes goals such as “org.flywaydb:
flyway-maven-plugin:migrate”, which is used for database schema migration. As
they are not used in a regular build process, their categorization into a specific
phase (e.g., Support of Compilation) is difficult.

Dependencies. This category contains goals such as “list” and “copy” of the
“org.apache.maven.plugins:maven-dependency-plugin” plugin. We also put there
the keywords “Could not resolve dependencies” and “Failed to resolve classpath
resource”, which are used to catch dependency-related failures when there is no
further information about the failed goal. Typical errors occurring in this category
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are invalid resource configurations in the POM file, or failed downloads due to
unavailable artifacts. As is the case for all crosscutting categories, this category of
failures can occur in each phase of the build process. It is possible that, in order to
execute the test phase or a static analysis check, the build process needs to use
(and possibly download) the proper plugins via dependency resolution.

Our build failure catalog comprises 20 categories. 3 are related to Com-
pilation, and 6 to specific Testing and Code Analysis activities. Release
preparation and Deployment represent 2 separate categories, and the re-
maining are related to other build activities (e.g., Packaging).

Answer to RQ1

4.3.2 How Frequent Are the Different Types of Build Failures
in the Observed OSS and ING Projects?

Percentage of Failing Builds. For both the OSS and ING analyzed projects,
the overall percentage of failing builds during the period of observation is 26%. In
contrast, Kerzazi et al. [50] and Miller [75] observed lower percentages of 17.9%
and 13% respectively; Seo et al.’s study at Google revealed a rate of 35% failing
builds.

Fig. 4.1 provides, for both ING (blue bar) and OSS projects (yellow bar), a
break-down of the build failures across the (sub-)categories identified in RQ1.
Note that we performed this classification on 3, 390 − 779 = 2, 611 ING and
30, 792 − 9, 774 = 21, 018 OSS build failure logs for which we were able to mine
sentences to support the identification of the causes of failures (e.g., failed goal
or any of the identified regular expressions). In 779 cases for ING and in 9,774
cases for the OSS projects, we were not able to classify the failure based on the
information contained in the log. However, the percentages in Fig. 4.1 are related
to the original set of failures (including non-classified build failures).

By observing Fig. 4.1, we can notice that the percentage of compilation-related
failures is fairly limited, for both production code (4.2% ING and 7.1% OSS)
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Figure 4.1: Percentage of build failures for each category

and test code (2.3% ING and 1.8% OSS). This is below the 26% observed by
Miller [75]. In the case of ING, one possible reason is that — as also confirmed
by a survey conducted within ING [135] — private builds (i.e., builds executed
on the developer’s machine) are used to limit the number of build failures due to
compilation errors.

Interesting considerations can be drawn for build failure categories pertaining
to testing. The unit testing category is the one for which we can notice, on the one
hand, the highest percentage of build failures for OSS (28%, perfectly in line with
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the percentage observed by Miller [75] at Microsoft), and, at the other hand, a large
difference with respect to the relatively low percentage (5.2%) observed for ING
projects. Conversely, we observe a relatively high percentage of integration testing
failures in ING (13.3%) and only 5.0% for OSS. When we compare this insight
with the one reported above about unit testing, we can a confirm the findings of
Orellana et al. [68] indicating that in OSS projects unit testing failures dominate
integration testing failures. We can also see how ING projects are affected more by
integration testing than unit testing failures. Previous research [135] indicates that
unit tests are often executed within private builds in ING, therefore the number of
remaining failures discovered on the CI server turns out to be fairly limited. We
found no evidence of non-functional testing failures in OSS projects, while there is
a relatively low percentage of them (2.7%) in ING. This low percentage of failures
was surprising, as the CD pipeline used in ING explicitly perform non-functional
testing (including load testing) at a dedicated stage (i.e., not during the build,
as reported in a survey conducted in ING [135]). We deducted that in ING a
preliminary load testing is performed at the build stage (by means of Gatling9),
with the aim of an early and incremental discovery of bottlenecks. Finally, we
found a relatively high number of crosscutting test failures (18.3% for ING and
8.3% for OSS) not attributable to specific testing activities.

Static analysis tools are also responsible for a relatively high percentage (16.4%)
of build failures in ING; Miller [75] observed a substantially higher percentage
of 40%, without discussing specific reasons. In contrast, for our OSS projects,
the percentage is 4.2%, similar to the observation of Zampetti et al. [142] who
found percentages almost always below 6%. One may wonder whether the higher
percentage of static analysis related failures in ING are caused by stricter quality
checks. We have no evidence of this, as we had no access to the SonarQube entries
related to the build failures. Instead, OSS projects used static analysis tools on the
CI server (without running them on a dedicate server as in ING) and the results
are usually visible in the build logs. For this reason, a manual scrutiny of some
build failure logs confirmed that, in such cases, build failures were indeed due to
specific warnings raised by static analysis tools.

9https://gatling.io/

https://gatling.io/
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For ING projects we perceive a high percentage of release preparation problems
(21.1% of the total). This can be attributed to the way ING handles the deployment
of a new application: it relies on the standard Maven process instead of using a
combination of different goals, as it is common in OSS projects. Also, for deployment,
the percentage of build failures that occurred in ING (10.0%, higher than the 6%
that Miller reported [75]) is much higher than for OSS (0.5%). As discussed
in Section 4.3.1, such failures are mostly due to mis-configurations for accessing
servers (i.e., wrong server’s IP address) hosting the application artifacts. These
mis-configurations could potentially be very costly. Indeed, earlier research in the
area of storage systems [140] has shown that 16.1%–47.3% of mis-configurations lead
to systems becoming either fully unavailable or suffering from severe performance
degradations. The packaging category exhibits a relatively low percentage of build
failures, but still much more frequent in ING (2.1%) than for OSS (0.8%). In
summary, release preparation, packaging and deployment have quite different trends
in ING and OSS. In ING, the CD machinery is massively used to produce project
releases and deploy them on servers, and in particular on servers where further
quality assurance activities (i.e., load and security testing) occur before the release
goes in production. Instead, we assume that in most of the studied OSS projects
this rarely happens (but it is not excluded), as the main goal of CI is to make a
new release available for download on GitHub.

External tasks are responsible for respectively 8.8% (ING) and 1.4% (OSS) of
the build failures. The use of external tasks (e.g., the execution of Ant tasks in a
Maven build) might make the build process more complex and possibly difficult to
maintain, e.g., when one has to maintain both Maven and Ant scripts. While there
is no evidence that build maintenance is related to the increase of build failures, it
is a phenomenon to keep into account, e.g., by planning, whenever possible, build
restructuring activities.

Dependency-related failures exhibit similar percentages for ING and OSS (6.3%
and 7.1% respectively). Finally, we found a very small failure percentage (< 1.5%)
for other categories, such as clean, validation, pre-processing, compilation support,
documentation, and support (crosscutting) both in the case of ING and OSS
projects.
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Figure 4.2: Clusters of projects based on the distribution of build failures

Clustering Based on Build Failure Percentages. As explained in Sec-
tion 4.2, to better investigate the differences in the distribution of build failures in
ING and OSS projects, we clustered the whole set of projects (both OSS and ING)
using the K-means algorithm [67]. While the first analysis of Fig. 4.1 provides a
broad overview of build failure distribution in the entire context (ING or OSS),
the clusters help to understand the extent to which there are projects (within
ING, within OSS, or in both environments) exhibiting certain distributions of build
failures and, in general, to investigate the build failure distribution on a single
project level.

We modelled the projects as vectors where each dimension is a category of our
taxonomy (Table 4.1). Note that only for Testing we considered the sub-categories
as dimensions, because they lead to a significantly different distribution of build
failures. Then we computed for each project the percentage of its build failures
belonging to each category, and assigned values to the related vector dimension.
Finally, we applied the K-means algorithm several times in order to find the optimal
value of Silhouette statistics.

Fig. 4.2 depicts the clusters’ composition for k = 6 (where k is the number of
clusters), which corresponds to the optimal value of Silhouette. The clusters can
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Table 4.2: Distribution of build failure types in each cluster

Class A B C D E F
Clean 0% 0% 0% 0.02% 0.01% 0%
Validation 1.46% 0% 0.78% 0% 0.23% 0.38%
Pre-Processing 0.73% 0% 8.62% 0% 0.49% 0.22%
Compilation 6.06% 2.79% 9.57% 1.42% 12.07% 74%
Unit Testing 4.05% 3.02% 7.16% 0.67% 72.81% 15.12%
Integration Testing 7.52% 0.54% 2.03% 0.06% 0.70% 0.28%
Non Functional Testing 0% 0% 9% 0% 0% 0%
Crosscutting Testing 2.57% 0.19% 2.5% 93.54% 0.42% 1.53%
Packaging 1.16% 2.93% 5.88% 1.10% 1.71% 0.87%
Code Analysis 32.12% 0.24% 4.59% 0.64% 1.64% 1.03%
Deployment 22.20% 5.01% 1.93% 0.79% 1.96% 0.83%
External Tasks 14.29% 3.77% 0.88% 0.33% 1.02% 0.14%
Documentation 1.75% 0% 1.23% 0% 0.98% 1.21%
Release Preparation 3.66% 80.11% 3.15% 1.18% 0.26% 0.23%
Support 0.57% 0.17% 3.80% 0% 0.63% 0.08%
Dependencies 1.67% 1.23% 38.85% 0.22% 5.07% 4.09%

be interpreted by looking at Table 4.2, showing for each cluster the percentage of
build failures of its mean point (as computed by the k-means algorithm).

Three main clusters can be observed: A, B and E (containing 27%, 19% and
20% of the projects respectively). All projects in Cluster B come from ING, while
Cluster E includes almost exclusively OSS projects. Cluster A contains again a
high percentage of ING projects (75%).

Cluster A includes projects that fail mostly because of Code Analysis (32%),
Deployment (22%) and External Tasks (14%), while B exhibits mainly build failures
belonging to Release Preparation (80%). The last result is not surprising since, as
shown in Fig. 4.1, only ING builds are affected by this type of failures.

Cluster E contains projects that typically fail because of Unit Testing (on
average the 73% of the build failures belongs to this category) and this justifies
that within the cluster we mainly found OSS projects.

Cluster C is balanced (59% OSS projects vs. 41% ING projects) and contains
projects mainly exhibiting dependency failures, while the projects in Cluster D are
mainly ING and exhibits mostly Crosscutting Testing build failures for which we
cannot specify the type of testing involved.
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Cluster F is relatively small (64 projects) and catches only projects that usually
fail for compilation errors (74%).

In summary, the clustering analysis highlights groups of projects exhibiting
similar characteristics in terms of build failure distributions. Specifically, some
clusters are mainly constituted by ING (only) or OSS projects, as certain failures
dominate in one case or the other, while there are also some clusters that are almost
equally distributed. Also, we noticed how some clusters group together projects
mainly exhibiting one specific kind of build failure.

The OSS and ING projects exhibit a different distribution of build fail-
ure types. Overall, in OSS projects build failures happen mainly due to
unit testing failures, while ING projects fail, above all, because of release
preparation failures. Finally, the clustering analysis of the projects (based
on the distribution of build failure types) points out how projects from
the two different contexts in some cases spread out into different clusters.

Answer to RQ2

4.4 Discussion

In this section we discuss the main findings and their implications for future research.
Specifically, given the differences and commonalities that we observed in RQ2, some
CI practices deserve additional investigation.

Compilation Errors Are Typically Fixed in Private Builds Compilation
failures are considered to be particularly relevant during the build process, such
that the study of Seo et al. [107] conducted at Google focused entirely on that. Our
study reports a small (6.5% in ING and 9% in OSS), yet non-negligible percentage
of compilation-related build failures. On the one hand, our study confirms that
compilation success is a key prerequisite for code promotion (as stated in [135]),
and therefore mostly achieved in private builds. On the other hand, even such low
percentage highlight how CI can still be beneficial to spot compilation errors due
to the adoption of anti-patterns – e.g., when a change is pushed without compiling
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it – or due to the usage of different development environments, e.g., incompatibility
between the JDK versions installed on the CI server and the local machine.

OSS Projects Run Every Test on CI Servers, ING Mostly Integration
Testing Integration testing failures are more frequent in ING than in OSS. Instead,
and consistently with a previous study by Orellana Cordero et al. [84], OSS projects
exhibit more unit testing related failures. This indicates a different distribution of
testing activities across the development process in the open source and industrial
context. In OSS projects, developers often rely directly on the CI server to perform
testing (as the very high number of unit testing failures may suggest). In ING,
a conservative strategy is preferred, revealing unit testing failures before pushing
changes on the server (by running unit tests on local machine), and referring to
the build server mostly to verify the correct integration of the changes made by
different developers. This is also confirmed by results of a previous survey with
ING DevOps [135].

Early Discovery of Non-functional Failures in ING For large and business-
critical projects like the one used by ING for their online banking, appropriate
non-functional system testing is crucial. As explained in Section 4.2, this is mostly
done offline, on a separate node of the CD pipeline. Nevertheless, as our study
shows, developers in ING rely on the build process to spot, whenever possible,
non-functional issues, and specifically load test failures. While this happens in a
relatively small percentage of the observed build failures (2.1%), it suggests that
the early discovery of some problems during the CD process (i.e., as soon as a
change is pushed) could save time to solve some performance bottlenecks that
would otherwise be discovered at a later stage only. We have no evidence of this
activity in the OSS builds.

Release Preparation and Deployment Failures Are Very Common in
Industry, Less so in OSS We noticed how release preparation errors are very
frequent in ING (21.2% of our build failures are associated to this category). At the
same time, we did not find such evidence in OSS projects. In ING, the CI process is
built using fewer steps (i.e., Maven goals). Developers prefer to use (when possible)
predefined bundled steps (as in “prepare” goal, that “covers” several default Maven
lifecycle stages), instead of adopting a combination of different goals (each covering
a single stage) at least for the most critical stages of the build process (i.e., all
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stages before the deploy of a new release). Deployment errors are also conspicuous
(10%), and mostly due to mis-configurations. For OSS projects, in most of the
cases, there is no real deployment of a new release, it is just a matter of making
the new release available on GitHub, and using CI for assessing and improving its
quality.

Static Analysis (SA) Tools: on CI Server in OSS, Remotely in ING
Our results indicate an intensive percentage of failures related to static analysis
tools in ING (16.4%) compared to OSS (4.2%). Looking at the failed goals in the
build process of projects in both contexts, we noticed how OSS developers prefer to
run SA tools on the build server while in ING SA tools are run on a different server
(via SonarQube). This choice did not necessarily lead to less build failures (we
noticed more static analysis related failures in ING), but it is an indication about
the willingness of ING to have i) well collected data, easy to query and monitor,
and ii) a separate analysis of code smells without overloading the CI server.

4.5 Threats to Validity

Threats to construct validity concern the relationship between theory and observa-
tion. The most important threat of this type in our study is due to our limited
observability of the ING build failures (i.e., we had to rely on build failure logs only).
For example, we could not perform a fine-grained classification of some testing or
static analysis failures whose nature was only visible from separate reports.

Another threat is due to possible mis-classification of build failures, given that
the classification is only based on failed build goals and, in some cases, on keyword
matching. As explained in Section 4.2, we mitigated this threat by performing a
manual validation on a statistically significant sample of ING build failures, mainly
aimed at verifying that such a matching was correctly performed, and reported
results of such a validation. We checked whether the agreement of such a validation
was due to chance by using the Cohen k inter-rater agreement. As for OSS failures,
we repeated the process, however on only 377 build failures in total, as it was not
a complete new validation of the taxonomy, but rather a check of its validity when
applied to OSS projects.
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Threats to internal validity concern internal factors of our study that could
influence our results. The most important threat of this class is related to the
subjectiveness likely introduced when devising the build failure catalog. We limited
such a subjectiveness in different ways, i.e., by performing multiple iterations
conducted by different authors independently, and by using the Maven standard
lifecycle as a roadmap for creating such a catalog. For ING projects, we could not
observe and control the projects’ programming languages (although an ING team
leader reported us that are mostly written in Java). Another threat is related to
the choice of the number of clusters in RQ2. We mitigated this threat by using
the silhouette statistic [54] to support our choice. Furthermore, while the number
of OSS and closed-source projects is comparable, the number of build failures for
closed-source is one order of magnitude greater than for OSS, and this sample
imbalance could have affected our results.

Threats to external validity concern the generalization of our findings. On the
one hand, results related to our closed-source sample are necessarily specific to
ING. It is possible that these results partially generalize to other organizations
in the financial domain, but this has not been specifically validated in our work.
In Section 4.4, we discussed in how many cases our findings are consistent with
those of previous studies, and also in which cases we obtained different results.
OSS results, on the other hand, are representatives of OSS Java-based projects
using Maven and relying on the Travis-CI infrastructure. In some cases (e.g., for
testing), we found confirmations of results from previous studies. Our study does
not necessarily generalize to applications built using other languages, build scripts,
and different CI infrastructures. Finally, it is possible that the different domain of
closed-source projects and open source projects could have impacted our results.

4.6 Related Work

Ståhl et al. report that CI is becoming increasingly popular in software develop-
ment [112]. With this continued uptake in industry, researchers have also focused
more on build systems, and more specifically on build failures.

Build Failures. Miller’s seminal work [75] on build failures in Microsoft
projects describes how 66 build failures were categorized into compilation, unit
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testing, static analysis, and server failures. Our observation is larger (18 months vs
100 days, 13k builds vs 515, and 3,390 build failures vs 66), and describes a more
detailed categorization of build failures, but covers a different domain. Rausch et
al. [100] studied build failures in 14 popular open source Java projects, finding
that most of the failures (> 80%) are related to failed test cases, and that there
is a non-negligible portion of errors due to Git interaction errors. Seo et al. [107]
conducted a study focusing on the compiler errors that occur in the build process.
They devised a taxonomy of compilation errors that lead to build failures in Java
and C++ environments. Kerzazi et al. [50] analyzed 3, 214 builds in a large
software company over a period of 6 months to investigate the impact of build
failures. They observed a high percentage of build failures (17.9%) that brings a
potential cost of about 2, 035 man-hours considering that each failure needs one
hour of work to succeed.

Beller et al. [10] focused on testing with an in-depth analysis of 1,359 projects
using both Java and Ruby programming languages. Testing is the main activity
responsible for failing builds (59% of build failures during test phase for Java
projects). While our results confirm their finding, we also highlight the importance
of failures due to other tasks. Orellana Cordero et al. [84] studied test-related
build failures in OSS projects. They identified that unit test failures dominate
integration test failures. Our results for OSS projects are similar, yet our findings
for ING projects are the opposite. This may be due to more intensive usage of
private builds to deal with unit tests in an industrial environment, which is not
the case for the OSS projects studied by Orellana Cordero et al. [84]. Zampetti et
al. [142] looked at build failures (mostly related to adherence to coding guidelines)
produced by static analysis tools in Java-based OSS projects. Our work found a
high percentage of build failures due to static analysis (for ING projects), although
in most cases due to infrastructure (Jenkins and SonarQube) mis-configuration.

Build Activities. McIntosh et al. [71] studied the relationship between
changes to production code, test code, and the build system. They noticed that
a strong relation between changes made at all three levels. McIntosh et al. [72]
studied version histories of 10 systems to measure the overhead that build system
maintenance imposes on developers. Finally, Desarmeaux et al. [21] investigated
how build maintenance effort is distributed across the build lifecycle phases of
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systems built through Maven. They observed that the compile phase requires most
maintenance activity.

Continuous Integration (CI) and Continuous Delivery (CD). Hilton et
al. [46] investigated why developers use or do not use CI, concluding that this
concept has become increasingly popular in OSS projects and then [45] presented
a qualitative study of the barriers and needs developers face when using CI. Ståhl
et al. [113] noticed that there is no homogeneous CI practice in industry. They
identified that there are many variation points in the usage of the CI term. Not
only CI practices vary between different industries, we also identified noticeable
differences between OSS and industry projects. Vassallo [135] investigated CD
practices in ING focusing attention on how they impact the development process
and the management of technical debt. Conversely, Savor et al. [103] reported on
an empirical study conducted in two high-profile Internet companies. They noticed
that the adoption of CD does not limit the scalability in terms of productivity of
one organization even if the system grows in size and complexity. Schermann et
al. [105] derived a model based on the trade-off between release confidence and
the velocity of releases. Finally, Schermann et al. [106] investigated the principles
and practices that govern CD adoption in industry and concluded, amongst others,
that architectural issues are one of the main barriers for CD adoption.

4.7 Conclusion

This paper investigates the nature and distribution of Continuous Integration (CI)
build failures occurring in 418 Java-based projects from ING (an organization in
the financial domain), and in 349 Java-based OSS projects hosted on GitHub and
using Travis CI as CI infrastructure. The results of our study highlight how OSS
and ING projects exhibit substantially different distributions of build failure types,
confirming but also contradicting some of the findings of previous research which
are based on OSS projects’ data or only data from a single industrial organization.
Our findings are important for both researchers and practitioners since they shed
some more light on the differences and commonalities of CI processes adopted in
the analyzed OSS projects and the observed industrial organization highlighting
interesting build failure patterns.
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Work-in-progress aims at replicating the study in other industrial environments
and further open source projects, and at performing a deeper analysis on the build
failures observed, e.g., studying the difficulty in fixing different kinds of problems.
Additionally, we plan to use our results to aid developers to properly maintain build
process pipelines to make it more efficient, e.g., by deciding what to do in private
builds on the developer’s local machine and what to delegate to CI servers, or how
to mitigate problems by conceiving approaches able to automate their resolution.
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Abstract

Continuous integration is an agile software development practice. Instead of
integrating features right before a release, they are constantly being integrated into
an automated build process. This shortens the release cycle, improves software
quality, and reduces time to market. However, the whole process will come to a
halt when a commit breaks the build, which can happen for several reasons, e.g.,
compilation errors or test failures, and fixing the build suddenly becomes a top
priority. Developers not only have to find the cause of the build break and fix it, but
they have to be quick in all of it to avoid a delay for others. Unfortunately, these
steps require deep knowledge and are often time-consuming. To support developers
in fixing a build break, we propose Bart, a tool that summarizes the reasons for
Maven build failures and suggests possible solutions found on the internet. We
will show in a case study with 17 participants that developers find Bart useful to
understand build breaks and that using Bart substantially reduces the time to fix
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a build break, on average by 37%. We have also conducted a qualitative study to
better understand the workflows and information needs when fixing builds. We
found that typical workflows differ substantially between various error categories,
and that several uncommon build errors are both very hard to investigate and to
fix. These findings will be useful to inform future research in this area.

5.1 Introduction

Continuous integration (CI) is an agile software development practice that advocates
frequently integrating code changes introduced by different developers into a shared
repository branch [47]. An automated system builds every commit, runs all tests,
and verifies the quality of the software, e.g., through automated static analysis
tools [25]. This helps to detect issues earlier and locate them more easily [50]. CI
is widely adopted in industry and open source environments [136] and has already
proven its positive effects on release frequency, software reliability, and overall team
productivity [46].

Despite its undisputed advantages, the introduction of CI in established devel-
opment contexts is anything but trivial. Hilton et al. [45] found that build breaks
are a major barrier that hinders CI adoption and various reasons exist for a build to
break [134], e.g., compilation errors, testing failures, poor code quality, or missing
dependencies. Developers need to learn how to efficiently identify the reasons for a
build break and, unfortunately, the required skill set is still different to traditional
debugging. Established techniques that are widely used in the development envi-
ronment [81], like setting breakpoints to investigate a program right before a crash,
are not applicable, which makes it difficult and time consuming to remove a build
break [45]. As a result, developers spend a significant amount of their working time
comprehending and solving build breaks. It takes on average one hour to fix build
breaks [50].

Those results motivate the need for new ways to support developers in under-
standing build breaks and in deriving a fix. Existing works have already proposed
automatic build-fixing techniques, e.g., [66]. However, such approaches are typi-
cally limited to a specific type of build break (i.e., fixing unresolved dependencies).
In this paper, we propose a developer-oriented assistance system that supports
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build break fixes by summarizing available information and by linking to exter-
nal information. We do not focus on a specific build problem, but empower the
developer by providing relevant information in a wide range of build failures. To
the best of our knowledge, we are the first to propose such an information-centric
developer support during build breaks.

In the first part of this paper, we will investigate whether generated summaries
can help developers with comprehending build logs. We will also empirically analyze
the effect of a build summarization tool on the time needed for understanding and
fixing a build break. More specifically, we will answer two research questions:

RQ1: Are summarized build logs more understandable?
RQ2: Does a semi-automated support system influence the time that is required
to fix a broken build?

We have implemented the Build Abstraction and Recovery Tool (Bart) to study
these questions. Bart is a Jenkins plugin that summarizes logs of failed Maven
builds and that links related StackOverflow discussions to help solve the build
failure. To answer both research questions, we deployed Bart in an empirical
study with 17 developers. Our results show that developers consider the generated
summaries helpful for fixing build breaks; as a further result, the resolution time
for fixing the build can be significantly reduced.

However, the results also show that developers only find some solution hints
valuable, other cases are perceived as less helpful. To understand this observation,
we asked the following research questions and discuss the corresponding results in
the second part of the paper.

RQ3: How do developers approach different types of build failures?
RQ4: What types of build failures are hard to fix?

To answer these questions, we have conducted a large-scale qualitative study
that involved 101 developers. Our results show that fundamental differences exist in
how developers approach the different failure categories that have been investigated.
For example, while code-analysis build failures are easy to fix with information
contained in the build log, other scenarios like testing failures require a much deeper
investigation of information that needs to be collected elsewhere. Our survey has
also revealed that problems related to the build infrastructure are not only hard to
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investigate, but also hard to address, once the problem is understood. While these
categories are known, they have not yet been the focus of an investigation, likely
because they occur too infrequently. Our results suggest that they are still worth
investigating, because they represent a major pain-point for developers when they
occur.

In summary, this paper makes the following contributions:

• Presentation of a novel idea to support build fixing through build log summariza-
tion and linking to StackOverflow resources.

• Proof-of-concept implementation for Bart.
• Investigation of the effect of Bart on the understandability of build failures and
the time for fixing a build failure

• A qualitative analysis of the workflows and information needs of developers that
resolve build failures.

This paper is an extension of previous work [131]. Compared to the original
paper, it contains the following new contents.

• We have added two research questions that investigate qualitative aspects.
• We have doubled the number of the participants in the experiment to improve
the evaluation of Bart and to make our findings more convincing.

• We have conducted 9 semi-structured interviews with several study participants
to better understand information needs and the limitations of Bart.

• We have sent out a survey and analyzed 101 answers from a diverse set of
developers to validate our interview results with a more general crowd.

• We have derived a methodology to open-code build fixing workflows.
• We have published Bart and open-sourced the implementation.1

Scripts, data, and additional material are available in the online appendix [132].

1https://plugins.jenkins.io/bart

https://plugins.jenkins.io/bart
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5.2 Creating a Build Abstraction and Recovery Tool
(Bart)

To understand our vision of developer-oriented assistance, it is important to reflect
on the typical CI pipeline that is illustrated in Figure 5.1. Developers working in
such a pipeline synchronize their working copy frequently with the central repository
that is shared by all team members (1). They pull changes from others and push
their own contributions. The repository is being monitored by the build server.
Every time a new commit is pushed to the repository, the build server will update its
working copy and build the project (2). This typically includes multiple build stages,
for example, compiling the sources, running the tests, generating documentation,
or validating the software quality through static analysis. If all these stages have
passed (3), the build is considered to be successful, which typically results in the
release of the software. If the build fails, on the other hand, developers are being
notified by the build server about the error. This typically happens through sending
an email or by visiting the web frontend of the build server (4). The developers
have to consult the build log (5) to understand the problem and provide a fix, a
difficult and time-consuming task that typically consists of three steps.

Log Inspection The developer investigates the build log to get further information
about the build failure. While it is often simple to spot the part in which the
build failed, it is very often difficult to read the log and to understand the failure
reason.

Hypothesis Once the developer has an intuition about the root cause for the break,
the problem should be replicated, if possible on the developer machine and ideally
by providing a test. This makes it possible to use a debugger to inspect the
failure.

Fix If the root cause of the build failure is identified, fixing it is usually the easy
part. The developer implements the fix, pushes it to the repository, and waits for
the result of the new build. All the steps are re-executed if the build fails again.

Executing these three steps is difficult and deriving a hypothesis about the root
cause of the failure requires experience. If the developer gets stuck, a common
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Figure 5.2: Meta-Model that is available to the hint generators in Bart

strategy is to ask more experienced team members [58] or to search on the Internet
for solutions [116].

In this paper, we present Bart (6), the Build Abstraction and Recovery Tool
that supports developers by enriching the build log through summarization and
linking of external resources. We have designed Bart as a support tool for Maven
builds and we have created a proof of concept implementation for the build server
Jenkins. Our solution is complementary to the existing pipeline that we have
discussed before. Bart does not replace the inspection of the build log, instead, the
build log is embellished with further information to facilitate a faster and better
decision making of the developer. For example, our screenshot (7) shows the Build
Summary (a general summary of the build result) as well as a list of hints, in this
case details about a compilation error. These hints are included in the Jenkins
build overview page.

Bart facilitates the generation of these hints with two reusable parts. First, it
parses the build log, extracts all relevant sections (e.g., keywords, commands, built
modules), and stores this preprocessed information in a meta-model (8). Second,
Bart is extensible through additional Hint Generators (9). We have built five
different hint generators that summarize the information found in the build log,
as well as hint generators that use information from the build log to search for
solutions in the Internet. For example, our proof-of-concept implementation can
link to related discussions on StackOverflow.
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We will introduce these individual parts in the remainder of this section. Sec-
tion 5.2.1 introduces our build-log meta model and describes our parsing. Sec-
tion 5.2.2 contains the extension point mechanism for hint generators and a de-
scription of the four different hint generators that summarize build log information.
Section 5.2.3 discusses the hint generator that links build failures to external
information, such as discussions on StackOverflow.

5.2.1 Detecting Failure Information in the Log

Build tools typically log all their actions in a detailed log that allows developers
to reconstruct their actions after the fact. Such a build log is typically stored as
plain text. All details about the build are contained, but such logs are very large,
e.g., even the build log of the relatively small Maven build tool itself (∼ 130K
LoC) results in a build log of more than 1,500 lines. To make the creation of new
hint generators in Bart straight-forward, we preprocess these logs. We provide
an abstraction over a Maven build log that makes it easy to find exactly the
information that the hint generators need. While we are going to focus on the
Maven build system,2 the most used build tool among Java developers [69], the
underlying idea is general and can also applied to other build systems. In this
section, we will first briefly describe Maven’s building concept, the structure of its
build log, and our parsing. We will then introduce our meta model that we use to
store the relevant build information.

Maven follows the concept of convention over configuration. It provides a
standard build configuration that defines several phases that are run one by one
in the default build lifecycle (e.g., compile, test, verify). The set of phases is
fixed and most of them are empty by default. A concrete build job can now add
specific goals to the different phases, if needed. So, for example, a project could
add the invocation of a static analysis tool to the verify phase. In practice, build
files contain the configuration for many of such goals that range from dependency
resolution in the very beginning of builds to packaging or deployment that typically
take place at the end.

2https://maven.apache.org

https://maven.apache.org
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Maven builds are organized hierarchically. In addition to the goals that are
configured in the build file for the current module, parent configurations can be
referenced to inherit configuration options. In addition, it is possible to refer to
submodules that are then build together with the current module.

At each build and starting from the module for which the build was triggered,
Maven creates the dependency tree between all (sub-) modules and schedules the
individual builds in an order that does not violate their dependencies. In Maven
terminology, this build plan that contains the names of all modules is called the
reactor. During the build, one section is dedicated to each module. This section
contains entries for each executed goal, which might also prints additional output
to the log. At the end of the build, Maven generates a reactor summary, which
lists the individual build results. In addition, the reactor summary will also show
consumed memory, and -for build failures- further information about the module
and goal, in which the build broke.

As a first step in the failure resolution, a developer that has to read such a
build file, has to navigate through a big log to find the relevant information. This
is also a hard task for an automated processor, because the individual parts need
to be parsed or otherwise processed with string utilities.

To simplify the access to the contained information, we implemented a parser
that, taking a build log as input, fills the meta-model that we have created, as
depicted in Figure 5.2. The model follows the structure that we have introduced
before. The root entity of a build log is a Build, which has basic properties like the
required memory for the build. A build refers to several Module definitions that
are part of the build. In addition to timing information, each module has a unique
name and a result. It also contains information about the different Goals that were
executed while building it. Each Goal combines the GoalName (i.e., a reference to
the tool that was run), the BuildResult or the invocation, and a Payload, which
contains all output that was generated for this Goal. Each line is annotated with a
LogLevel and contains content as string.

The original build log contains a reactor summary at the very end that can be
requested by calling Build.getSummary(). We do not explicitly store the contained
information in the meta-model, because it can be fully inferred from the stored
data. In general, this meta-model does not lose any information of the original log.
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It splits information into individual sections and provides easy access, but it could
be transformed back into the original log file.

Please note that the parser used for this paper does not support the complete
meta-model yet. Our implementation supports all parts that were used for the
summary generation, leaving out details like the build duration or the amount of
memory that were irrelevant in this context. This does not represent a concep-
tual limitation of the meta model though and can be solved by spending more
implementation effort on the parser.

5.2.2 Summarizing Build Log Information

Understanding the extensive build logs generated through a Maven build is tedious.
The reactor summary that is automatically generated at the end of a build contains
basic information about a build failure and represents a first step in the right direc-
tion. However, the information is presented as plain text without any highlighting
and it is hard to read by developers. In addition, only the lines of the failing goal
that are marked as error are included in the summary, surrounding information,
which could further explain the error, is omitted. We think that this current build
summarization is not sufficient. Thus, we propose an improved summarization and
a highlighting of the important pieces to ease the life of developers and to make
them more efficient in understanding the build log.

Inspecting the failing section of the build log should provide all required infor-
mation to understand the cause of the failure, so it represents the starting point
of any investigation of a build failure. However, the actual information that is
included in the corresponding part of the build log can be very extensive (e.g., long
lists of executed tests) and it also heavily depends on the failing goal. Fortunately,
it has already been shown that build failures can be assigned to different categories,
based on the goal or build step that failed [134]. We propose to provide a better
guidance in the fixing process by tailoring the summary to the failure category.

We have created a conceptual framework and use it to present build summaries.
The implementation is modular and general, but we provide an integration into
the build server Jenkins, which adds the polished output to a build report that is
shown in Figure 5.1. To create this output, we first parse the build log into our
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meta-model. Build status and individual build goals are directly available in the
model. We do not add hints to successful builds, so we can directly skip them in the
processing. For a failing build, we determine the failure category based on the last
executed goal. Using this category, it is possible to find applicable hint generators
to save execution time. These specialized hint generators can provide hints that
might point the developer towards a build fix. A Hint is just a key-value dictionary
that can contain arbitrary contents. Hint generators can return an empty list, a
single hint, or also multiple hints. The presentation to the user is achieved by
iterating over all hints and by putting all their key/value pairs into a table. We
do not imply any restriction on the type of key that can be generated, because
the actual hint generator should select the most meaningful information for the
developer.

In this paper, we focus on a proof-of-concept implementation that supports the
most frequent build break categories. Based on the dataset of industrial and open-
source projects analyzed in previous work [134], the most common build failure types
are Compilation (9% of open-source and 6.5% of industrial projects), Dependencies
(7.1% of open-source and 6.3% of industrial projects), Testing (41.3% of open-source
and 39.5% of industrial projects), and Code Analysis (4.2% of open-source and
16.4% of industrial projects). Please note that we did not consider cross-cutting
categories such as Release Preparation as suitable for our implementation, because
(i) they are not associated with a specific step of the build process and (ii) the
structure of the log is highly variable. In addition, we want to provide an additional
Build Summary that provides an overview over the whole build. In the following,
after providing an overview, we will briefly introduce these different hint generators,
which information we want to show to the developer in each case, and how we can
get access to the required build log data.

� Build Summary The Build Summary provides a high-level overview over the
result of the build. It mimics Maven’s reactor summary, but reduces the amount
of information to a minimum. Rich formatting options are applied to highlight the
different information. You will find an example of the build summary in Figure 5.1.
Each summary is composed by the following sections.
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Reactor Summary The list of modules can be requested from the Build object,
their individual results can be directly used.

Build Result Can directly be requested from a Build object.
Failed Goal The last executed goal of a failing Build.
Error Cause The error cause consists of the error message that is printed by the
failing goal. These can be extracted by selecting all lines of the goal that have
the log level “error”.

� Compilation Failures The hint generator should provide detailed information
about the location of the compilation error. All this information can be found in
the Payload of the failing goal.

Type Name of the type (e.g., class) that could not be compiled.
Line Line number, in which the error has occurred.
Reason Textual description of the compilation error, e.g, instantiation of an abstract
class, when provided by the build log.

� Dependency Failures Declared dependencies can lead to various build failures.
Our summarizer helps understanding the dependency error by showing the following
information.

Dependency The name of the dependency that causes the failure. The Maven
coordinates of the dependency are mentioned in the error message and we use a
regular expression to parse them.

Reason Textual description of the dependency error. Typical reasons are invalid
versions numbers or missing internet access.

� Testing Testing failures are particularly tricky to fix, because they can occur
after introducing a change in a completely different part of the system. For this
reason, it is important that a hint does not only contain the location of the test,
which is required to replicate the failure locally, it should also contain the reason
that explain the failure. As a result, the hint generator reports the following:

Location The location, in which the testing failure occurs. This contains both the
test class and the failing test case.
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Reason A textual description of the test failure. This is taken from the failed
assertion statement, so the quality of these descriptions depends on the concrete
test case. In case of an error, also the stack trace of the failure will be included.

� Code Analysis Many builds use static analysis tools to validate properties
(e.g., a consistent programming style) of the system. Like for all other types, also
for code-analysis failures developers need to find the relevant information that
is spread across different sections of the log. Let us consider a simple example,
a Checkstyle error. The Maven’s reactor summary only reports “You have 1
Checkstyle violation”, but to understand the actual problem, the developer first
has to find the right section of the log, which then includes the detailed description
(e.g., “Line is longer than 120 characters”). Each static analysis tool produces
a different output and individual hint generators are needed to cover them. We
selected Checkstyle as a representative for such static analysis tools because is
the most frequently used in open-source Java projects [9, 142]. We include the
following information that help to understand related build failures:

Location The path to the file, in which the style violation was detected. The
location also includes the line number.

Reason Name of the style rule that caused the failure. These names are typi-
cally very expressive, e.g., “method name too long”, so the proposed hints are
potentially very meaningful.

� Future Extensions Future hint generators might use other build-log information
in their hints. They can either reuse our meta model or provide their own extraction
strategy to find the interesting information in the build log. It is possible, for
example, to use custom regular expressions to parse specific information from the
Payload. As a fallback, it is always possible to recover a full build log from our
meta-model, which ensures support for all hint generators that work on the build
log. Extensions that require external files in addition to the build log, like test
coverage reports, represent a special case. These files are not contained in the build
log. Hint generators that require access can still parse the respective path from the
build log and open these files separately.
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Figure 5.3: An example of hints derived from StackOverflow discussions

5.2.3 Hints from External Sources

Summarizing local information improves the ability to understand the contents of
the build log. However, developers may encounter situations, in which the error
message is easy to understand, but requires a complex fix. For example, if the
source level is not configured in Maven, it will use Java version 5 by default. If the
developer now writes Java code in a newer version, e.g., version 8, and uses one
of the newly introduced constructs, e.g., lambda expressions, the Maven compiler
plugin will fail with a syntax error, even though no problem will be reported in the
development environment. While the summary will point out a syntax error very
clearly, in this case, an inexperienced developer will struggle to solve this on their
own and will either ask a more experience colleague for help or simply search for a
solution on the internet. For this reason, we also need to provide an infrastructure
in Bart that allows the creation of hint generators, which can go beyond a local
summarization. These external hint generators should be able to add additional
hints and link to external resource in their suggestions for possible solutions.

It is very likely that, in case of a build failure, a similar build break has already
been discussed online. Previous work has already shown that question and answer
sites, like StackOverflow, can provide a great source of information to support
developers [88]. The site contains almost 60K discussions that are related to Maven
development,3 which makes us very confident that it can also be a good source
for tips on how to fix a broken build. An example of a hint that refers to a
StackOverflow discussion is shown in Figure 5.3. The example hint explains a
specific compilation failure and also links the full discussion to provide additional
context.

3https://stackoverflow.com/questions/tagged/maven

https://stackoverflow.com/questions/tagged/maven
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To obtain relevant discussions from StackOverflow, we use a twofold approach.
First, we query StackOverflow for discussions that are related to the build log.
Second, we rank the returned posts and present the most relevant discussions to the
developer. The hint engine starts with requesting the build log and the hints that
have already been generated in the local summarization step. Given that the local
hint generators have already identified the key parts of the build log, we make use
of this information to create a query that is as specific as possible. The hints are
being cleaned by removing local information (e.g., paths or file names) and common
overhead that is added in every Maven build (e.g., formatting characters or goal
names). The resulting query mainly contains the error message that describes the
failing build and it is used to search on StackOverflow.

In a second step, we rank the returned posts to identify the ones that are most
related to the actual build log. To achieve this, the build log is first cleaned in the
same way as the query and then tokenized to create a set of keywords that describe
the build. Common english stop words (e.g., “the”, “or”, “and”) are removed to
improve this set of keywords. For each post, we calculate a post score by counting
how many different keywords are used in the body of the discussion. After ordering
the posts by their score, the top four proposals are selected and shown to the
developer. We decided to list the top four posts because because this number
typically avoid that developers have to further scroll the page. We did not want to
come up with a long list that adds an additional burden on the developers.

5.3 Investigating the Effect of Bart on the Build Fix-
ing Practice

To understand the effects that a tool like Bart has on the practice of fixing a build,
we conduct an empirical study, in which we will quantitatively measure Bart’s
capability to improve the understandability of build failures and to improve the
performance of developers when fixing broken builds. This first study consists of
two parts, a controlled experiment and a follow-up questionnaire, that covers the
different aspects that we want to investigate.



146 Chapter 5. Developer-Oriented Assistance for Build Failure Resolution

Table 5.1: Projects used in the controlled experiment for evaluating Bart

Project Name Version Size (LoC) #GitHub Stars #Builds

ActiveJPA 0.3.5 39,335 143 123 (master)
Sentry-java 5.0.0 113,332 312 509 (master)
Fongo 2.1.1 31,088 374 404 (master)

Understandability In the first part, we assess whether or not the summaries gen-
erated by Bart make it easier to understand the cause of a build break and to
formulate a solution strategy.

Performance In the second part, we measure Bart’s effect on the required time to
fix certain types of build breaks.

In the following, we will first introduce the context and our methodology that
we have applied to investigate both aspects and we will then answer the first two
research questions.

5.3.1 Context

The context of our study includes (i) as objects, build breaks that we have generated
from selected Java projects, and (ii) as subjects, developers that participated in our
controlled experiment.

The three software systems that we considered in our study are illustrated in
Table 5.1. We followed the methodology of Bavota et al. [5] to select systems that
developers can easily get familiar with and that are, at the same time, representative
for real software systems. ActiveJpa4 is a Java library that implements the active
record pattern on top of Java Persistence APIs (JPA). Sentry-java5 is an error
tracking system that helps developers to monitor and fix crashes in real time.
Fongo6 is an in-memory Java implementation of MongoDB. The considered
systems are hosted on GitHub and built on the cloud-based build infrastructure
of TravisCI. While our selected systems have less than 500K lines of code, they

4https://github.com/ActiveJpa/activejpa/
5https://github.com/getsentry/sentry-java
6https://github.com/fakemongo/fongo

https://github.com/ActiveJpa/activejpa/
https://github.com/getsentry/sentry-java
https://github.com/fakemongo/fongo
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are very popular (more than 100 stars on GitHub) and frequently built (more
than 100 builds on the master branch). For our study, we have injected bugs into
these systems to generate broken builds. The introduced bugs belong to the four
most recurrent categories of build failures [134], i.e., compilation, dependencies,
testing, and code analysis. We created different mutations of the extracted systems
for every category of broken builds and ended up with five broken ActiveJPA
versions, two broken Sentry-java versions, and one broken Fongo version.

More details about these broken versions are depicted in Table 5.2. We always
created two mutated versions to avoid learning effects in both tasks of the study.
To generate the testing build breaks we changed an assertion in the test class
FongoAggregateProjectTest from assertNotNull to assertNull. We have also
altered the count method of the class org.activejpa.entity.Model by adding an
incorrect offset to the returned value. We chose an obvious mistake to fail the build,
i.e., we added 100, which is easy to spot. To provoke dependency build breaks, we
have first inserted an obvious non-existing dependency and, second, we included
a typo in another (existing) dependency. We have introduced two code analysis
build breaks in Sentry-java, by adding a new method with a very long name to
the class SentryAppender and by deleting the Javadoc comment of the method
doClose in the class AsyncConnection. Both are picked up by CheckStyle, which
will raise the errors Very long function name and Javadoc has empty description
section. Finally, to create compilation errors we added a return statement in
the void method close() of the class org.activejpa.JPA and inserted an illegal
combination of static and abstract in the signature of the method deleteAll of
class org.activejpa.entity.Model.

We contacted participants by sending out invitations to students from the
University of Zurich (UZH) and Swiss Federal Institute of Technology in Zurich
(ETHZ) and to professional developers that we reached through our personal
contacts. In total, 17 participants completed our controlled experiment. We
made sure that all participants have used Maven before. The majority of our
participants (9, 53%) report three to five years of programming experience, while
six participants (35%) declare that their experience exceeds five years. Only two
participant reported less than three years of programming experience. 11 (65%)
participants work as professional developers. We asked the participants to self-
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Table 5.2: Mutated components in the systems used to evaluate Bart

Build Break Type Project Mutated Component

Task 1
Test Fongo com.github.fakemongo.FongoAggregateProjectTest
Compilation ActiveJPA org.activejpa.jpa.JPA
Code Analysis Sentry-java net.kencochrane.raven.connection.AsyncConnection
Dependencies ActiveJPA pom.xml

Task 2
Test ActiveJPA org.activejpa.entity.Model
Compilation ActiveJPA org.activejpa.entity.Model
Code Analysis Sentry-java net.kencochrane.raven.log4j.SentryAppender
Dependencies ActiveJPA pom.xml

estimate their programming experience in a five-point Likert scale [62] from very
low to very high. Out of all participants, 10 report an experience level of above
average or higher (very high: 2). Only 2 participants rate their experience as below
average and no one rated their experience as very low. Our participants represent
a diverse group with different backgrounds.

5.3.2 Experimental Procedure

The empirical study we conducted with our participants consists of two different
tasks and was supervised by one of the authors. We provided summaries and
solution hints generated by Bart to our participants to study the understandability
of build breaks. In the second task, we investigate whether Bart can speed up the
fix.

First Task: Understandability In the first task, our participants answered a
questionnaire about the understandability of the build break summaries provided
by Bart. We used Bart to generate summaries and solution hints for the broken
builds of the mutated software components in Table 5.2 (Task 1 ) and asked our
participants to evaluate them. We provided our participants with the following
three questions and we asked them to answer on a five-point Likert scale from very
high to very low:
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• How much did your understanding of the build failure improve through the
summary of the build log?

• To what extent do the suggested solutions help you in conceiving a strategy to
solve the build failure?

• To what extent are the suggested solutions applicable to the specific build failure?

Second Task: Resolution Performance In the second task, we measured the
time it takes developers to fix a broken build to analyze the effect of Bart. Every
participant was asked to fix two of the four manually injected bugs for Task 2.
Specifically, each participant had to fix one bug with treatment (i.e., support
through Bart) and another one from a different category without. We have avoided
learning effects between the two different fix attempts of each participant by
changing the type of build failure and by changing the software component, in
which the bug was introduced. In total, we tested eight scenarios and each of the
four different build failures was fixed twice, once with and once without treatment.
The participants always started with fixing the build failure without treatment.
All participants managed to fix both assigned builds without external help.

One of the authors supervised the task and started the experiment with an
introduction to Bart. Participants were then asked to import the assigned projects
into their development environment. We were using a Jenkins build server, which,
in case of a build failure, produces a build overview that indicates the build result
(i.e., Failed), the last Git commit that was pushed to the remote repository, and the
name of the committer. In addition, Jenkins provides access to the generated build
log. The supervisor gave our participants time to get familiar with the projects
and with the Jenkins instance that was used to build the projects. To start the fix
attempt of the build failure, our participants were asked to trigger a new build of
the assigned project and to repair the resulting build failure. The task supervisor
measured the resolution time, i.e., the time between the build break and the next
build success. The same methodology was applied for the second build fix attempt.

General Feedback After finishing the experiment, our participants filled a survey
and participated in semi-structured interviews, in which we asked them for their
opinions on the build-failure summarization. The survey was focused on three
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main questions. The first question was about Bart’s ability to provide assistance
for build failure resolution. We discussed with our participants what they like or
dislike about our approach. In the second question, we asked for the perceived
benefits of using Bart. The last question asked whether our participants would
integrate a tool like Bart in their regular CI pipeline.

All 17 participants filled out the survey, but only nine participants agreed to
participate in a follow-up interview. We recorded and transcribed these interviews
and then performed card sorting to analyze the answers to our open interview
questions [111]. We started by splitting the answers into individual statements,
grouped common arguments, and finally organized these arguments hierarchically.
We will use statements from the participants later, when we discuss the results of
our experiment, and indicate which participant made them (e.g., I3 is interviewee
with id 3, S5 is survey participant with id 5).

5.3.3 Understandability of Build Breaks

Our first research question was how build summarization can improve under-
standibility. To answer this question, we evaluate the ratings of our participants
for the generated summaries of Bart. We visualize the answers in three diverging
stacked bar charts [101] that illustrate their rating regarding the understandability
of the summaries (Figure 5.4), their relevance (Figure 5.5), and their applicability
to the build break (Figure 5.6). We use the Likert values very high, above average,
average, below average, and very low.

Understandability Figure 5.4 shows how participants rate the understandability
of Bart’s summaries compared to the raw build logs that are provided by Jenkins.
All participants agree across the board that the understandability of the build
break summaries is at least above average, with the majority saying that it is very
high. Only in two cases, one for compilation and one for dependencies a participant
found the build summary below average and average respectively. Specifically the
participant found that Bart’s summary for the dependency error was comparable
to the default build-log presentation in Jenkins and that it did not improve.
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Figure 5.4: Understandability of build summaries

The developers seem to agree that Bart’s summaries helps them to better
understand the build log. One of the participant describes the actual build logs as
“cryptic” (I8), which could be caused by a lack of experience in reading it. However,
the overloading amount of information that is contained in a build log is a recurring
theme in the answers of our participants, even from experienced developers. Another
participant said that “Maven logs tend to be verbose, having a quick summary [...]
greatly reduces the time needed to find and correct a build failure” (I5) and another
one that “[Bart] helps to find the programming errors quickly” (I4) and “a structured
summary is way easier to grasp than many unstructured lines of text” (I4).

Our participants almost unanimously agree that Bart’s build summaries improve
the understandability of build logs.

Relevance & Applicability Figures 5.5 and 5.6 illustrate relevance and appli-
cability of the proposed solution hints from StackOverflow. The solutions hints
for compilation and code analysis breaks were mostly positively rated. Most our
participants found their relevance and applicability above average, more than half
of them rated them very high. However, two participants found the applicability of
the solution for the code analysis break below average and one of them, according
to the background information a very skilled developer, has also considered the
relevance of the solution below average. The one participant that has considered
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Figure 5.5: Relevance of solutions proposed in the hints
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Figure 5.6: Applicability of solutions proposed in the hints

the solution hint for the compilation build break as very low has little programming
experience and uses Java only occasionally. We assume that he simply did not
understand the suggested hint.

Most study participants find the solution hints for build breaks caused by compilation
and code analysis errors relevant and applicable.

In case of the dependency build break, the participants do not agree on a
rating for the relevance and applicability of the solution hints. The ratings are
centered around average, some of the participants find the suggestions relevant and
applicable (one participant considered it even very high), while others rate it below
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average. Two participants even think that the applicability of the solution hints is
very low. One of them is no frequent Java user, but the other one has a very strong
background in Java programming, so a lack of expertise alone does not explain the
different ratings.

Suggested solutions for dependency errors are often not considered as valuable
hints by our participants.

Our respondents were also not convinced about the relevance and applicability
of solution hints for testing build breaks. Most of our participants consider them
below average or even very low when compared to the original build log. One
possible explanation is that the available information in the build log of a failing
testing build, i.e., the name of the failed test, is project specific. This makes it
unlikely to find related solutions for such local errors in external resources without
taking other information into account.

Testing-related build failures are project specific. The build log alone is not sufficient
to identify related external resources.

5.3.4 Resolution Time of Build Failures

Our second research question was whether Bart can reduce the time that is required
to fix a build. To answer this questions, we have asked our participants to fix
the failing builds of the second task while measuring the required time. Table 5.3
illustrates the results of this experiment. It shows the average time to repair
the different build failure types with and without the support of Bart and the
corresponding standard deviations. We computed the coefficients of variation
(CV) [29] for all the combination of build failure types and fixing modalities. All
our calculated CV values are smaller than the traditional threshold 1 (in fact,
all values are < 0.5), which shows that the measured times are centered around
the mean. For this reason we refer to the average values in the following. While
the previous research question has revealed that the ratings for relevance and
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applicability of Bart’s solution hints differ between the build break types, the
results of the second task shows that using Bart leads to a substantial reduction
from 20% to up to 62% in the required time to fix a build across all scenarios. We
will discuss the different break types individually to explain what seems to be a
contradiction at a first glance.

Code Analysis and Compilation The study participants found that Bart’s sum-
maries improve understandability and that the solution hints are both relevant and
applicable. The positive ratings can also be confirmed in the practical task. The
time to fix a build break could be reduced by 62% for build breaks related to code
analysis and by 20% for build breaks related to compilation errors.

The error messages of both compilation and code analysis are self-explanatory,
but a certain degree of expertise is needed to understand them. Fortunately, the
exact same error messages and warnings appear in other projects as well, so it
is easy to find information online that provides context to understand the error
message. Our solutions hints are able to enhance the description of a warning or
even replace it and the developers get an explanation of an error or of a violated
rule without having to look it up on external resources. This aspect is particularly
useful when the developer is not used to a specific code analysis tool.

Our participants found it very helpful that Bart integrates all required in-
formation to understand the meaning of a rule violation “Less searching for the
relevant part in the error message, hence faster bug resolution” (I2). Moreover, the
links to StackOverflow are highly appreciated when the meaning of a warning is
non-obvious. “In the less obvious error causes, the stack overflow extracts prove to
be very useful” (I5). In these cases, the StackOverflow discussion about the proper
solution can provide additional context information to understand the problem.
The StackOverflow solution hints speed up the development process, because “You
can often get the information from bart without having to search the internet” (I6).

In addition to the summary, solution hints can provide the required context that
helps with understanding the cause of a build break.
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Dependency and Testing The relevance and applicability of the suggested solu-
tion hints were not considered useful for dependency breaks and testing failures.
These low ratings can easily be explained though. A search for the corresponding
error message would either return many unrelated resources (e.g., cases in which
other developers had trouble with some other dependency) or none (because the
error message of a test failure is project specific). However, we could still see
a substantially reduced fixing time for both categories. The improvement for
dependency related build breaks (43%) has even been the second most significant
reduction among all considered cases.

When considering error messages in both categories, it becomes apparent that
both are typically very self-explanatory. The errors immediately point to the
missing dependency or name the failing test. The required action to fix such issues
is straightforward: search for the missing library in the Maven Repository and
add it to the build file or fix the failing test, respectively. The participants that
fixed such kind of breaks have reported that the reorganization of the information
contained in the build logs significantly reduced the amount of time needed to
understand the cause of a build break. One of our participants stated that “[Bart
is] mostly a timesaver, not really a skill enhancer. Carefully reading the log usually
allows the extraction of the same information” (I5). Another participant found
that “directly serving the relevant solution, the debugging process is drastically sped
up” (I1).

Another important aspect that affects the time to fix a build is the debugging
environment. Previous work has shown [45] that CI server like Jenkins do not
provide sufficient support to debug a build break. According to our participants,
however, Bart summaries “add more capabilities to the environment” (I6) compared
to the raw build logs and “might make debugging unnecessary when the bug becomes
evident” (I2). They report that “if some tests fail, the Bart output can be helpful
in finding out why” (I5).

Dependency breaks and testing failures seem to be easy to understand. Providing
a good summary that highlights the locality of the issue seems to be the most crucial
factor on fixing time.
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Table 5.3: Resolution time per build failure type
( Avg. stays for Average and Std. Dev. stays for Standard Deviation)

Failure Type excl. Bart (s) incl. Bart (s) Reduction (%)
Avg. Std. Dev. Avg. Std. Dev.

Testing 436 154 334 33 23%
Compilation 187 19 150 32 20%
Dependencies 223 74 127 16 43%
Code Analysis 280 109 106 39 62%

Overall Average 37%

Overall, it seems that the different build break categories require different
support strategies. Some categories benefit from links to external resources that
provide additional context about an error (e.g., compilation errors), others benefit
more from an improved summarization (e.g., testing failures). Bart combines
both in one tool and substantially reduces the time to fix a build break across all
scenarios in our study, on average by 37%.

5.3.5 General Feedback on Bart

Most of our participants (76%) benefited from using our build summaries during
failure resolution. 53% reported that the big advantage provided by Bart is the
speed up in solving those failures. One participant stated that “especially with
very large build logs and more complex errors bart really helps to reduce the time
needed to figure out where the error happened” (I7). For 23% of our participants,
the main advantage of using build failure summaries is an easier analysis of the
root cause of the failure because “a structured summary is way easier to grasp than
many unstructured lines of text” (I4). 12% were not sure about Bart’s benefits
and another 12% did not think that Bart provides particular advantages. 63%
like Bart because they have to read less information in order to fix a build failure.
This is strictly connected to the most cited benefit provided by Bart, i.e., a faster
build resolution. 16% also appreciated having links to relevant StackOverflow
discussions that can point them to the right solution. They found those links useful
especially when the problem is quite complex to solve as stated by a participant
“Additional links to related StackOverflow posts can be helpful in fixing more complex
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problems” (I9). 21% really like the overview of the failure provided by Bart that
highlights the root cause of the failure. The last feedback that we received was
about the applicability of Bart in the actual development context of the participants.
35% would immediately install our tool. 23% would like to install Bart, but they are
not using Jenkins or Maven in their current projects. Furthermore, one participant
(I4) believes that he would install Bart for big projects and another would use it
only if there is “there is no installation overhead” (I2). Finally, 12% would maybe
install Bart, 6% do not know, and 24% do not want to install our tool mainly
because it does not apply to their context.

5.4 The Developer’s Perception of the Build Fixing
Practice

The results presented in the previous section show that Bart can provide assistance
that improves the developer’s performance when fixing build failures. Besides a
summarization of the error cause, which seemed to be universally helpful across all
failure scenarios, Bart also provides solution hints that help developers to derive
fixing strategies. However, the results of our follow-up questionnaire have shown
that the applicability of these solution hints differs between the failure categories.
While they seem to be helpful for some failure categories (e.g., compilation and
code analysis), the results are no longer unanimous for dependency-related failures,
and our solution hints do not work for testing. To further investigate and explain
this observation, we analyze the developers’ perception of build failures. We first
identify the characteristics of typical workflows for fixing build failures in various
categories and answer RQ3. After this, we answer RQ4 by exploring what types of
build failures developers consider more difficult to fix. We will use these findings
to discuss the current limitations of our StackOverflow-based approach and we will
envision future solution-hint generators.

5.4.1 Survey on the Perception of Build Failures

The goal of this study was to understand how people react to build failures and
what types they consider hard to fix. In order to fulfill our goal, we sent out a
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Table 5.4: Questions about the perception of build failures
( MC stays for Multiple Choice and O stays for Open answer)

Section Summarized Question Type #

What makes it hard to fix a build?
Q1.1 What typically takes longer, finding relevant information or

understanding the problem to derive a fix?
MC 101

Q1.2 For which kind of build failures does it take long to find the
relevant information?

O 101

Q1.3 For which kind of build failures does it take long to understand
the problem and to derive a fix?

O 101

How you would react to a build failure notification in the following scenarios?
Q2.1 Scenario 1: A compilation error broke the build. O 101
Q2.2 Scenario 2: The build broke due to a dependency error. O 101
Q2.3 Scenario 3: The execution of a test has failed. O 101
Q2.4 Scenario 4: A build failed, because a quality concern was de-

tected.
O 101

survey. In the following, we describe our survey’s questions and the demographics
of our participants.

Structure Our survey consisted of 15 questions and was divided into 4 sections.
In the first section, Background, we collected the demographics of our participants.
In the next two sections illustrated in Table 5.4, we surveyed developers on the
difficulty of solving build failures and on their reaction to the most common build
failure types. We wanted to identify whether it is harder to inspect the root
cause of the build failures instead of understanding the problem and plan the fix
(Q1.1) and for which types (Q1.2 and Q1.3). In Q2.1-Q2.4 questions, we asked our
participants to reflect on their workflows for solving compilation, dependencies,
testing, and code-analysis build failures. In the last section, we let our participants
add opinions on the survey and report other build failure types that researchers
should investigate more.

Recruitment Our survey was implemented using Google Forms. To recruit par-
ticipants we posted our survey on the Question and Answer Site Reddit,7 on

7https://www.reddit.com

https://www.reddit.com
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which we targeted 15 specific subforums (so-called “subreddits”), namely r/DevOps,
r/LearnProgramming, r/WebDev, r/iOSProgramming, r/Docker, r/learnJava, r/Python,
r/cpp_questions, r/dotnet, r/javscript, r/ruby, r/swift, r/coding, r/androiddev,
and r/csharp. We selected these communities because they (i) allow users to post
surveys, (ii) have a large number of active subscribers, thus increasing our potential
audience (e.g., the r/DevOps subreddit has approximatively 300 members that are
online daily), and (iii) include members that frequently encounter build failures.
We also sent an email to the mailing lists of Maven,8,9 Ant,10 and Jenkins.11 The
survey was available for 2 months in two different periods (from mid-October to
mid-November 2018 and March 2019).

Demographics A total of 101 respondents completed the entire questionnaire.
Among all survey respondents, 88.1% work as professional developers. 3% are
spare-time developers and 4% are students. The remaining part of our participants
(4.9%) consists of build engineers, DevOps engineers, site-reliability engineers, and
industrial researchers. 86.2% of our respondents rate their programming experience
High or Very High. In most of the cases (58.4%), the highest qualification is a
Bachelor Degree, while 16.8% hold a Master Degree, and 4% have a Ph.D. degree.
Self-studied developers represent 14% of our respondents. Our participants report
that 26.7% encounter build failures frequently and 6.9% very frequently. The
majority (48.5%) reports encountering build failures occasionally.

5.4.2 How Do Developers Approach Different Types of Build
Failures?

The fact that solution hints work for some categories of build failures, but not for
others, suggests that developer approach these kinds of build failures differently.
To better understand these differences, we have asked our participants to describe
the typical workflow in which they would address several kinds of build failures,
under the assumption that they do not know from the start what caused the

8users@maven.apache.org 9dev@maven.apache.org 10user@ant.apache.org
11jenkinsci-users@googlegroups.com

users@maven.apache.org
dev@maven.apache.org
user@ant.apache.org
jenkinsci-users@googlegroups.com
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problem. Participants could give an open answer and were supposed to illustrate
the individual steps.

Methodology

To identify the typical workflows for the four main build failure categories that are
covered by Bart, i.e., compilation, dependencies, testing, and code analysis, we have
conducted an open-coding approach [111] to encode the described workflows from
the open answers of our participants. Given that the output of the coding is not
simple labeling, but a complex graph describing the workflow, we had to adapt the
traditional methodology. Two authors of this paper have performed the following
steps to extract the workflows.

Common Vocabulary The first step in our methodology was to establish a shared
vocabulary, i.e., a set of activities that we accept in the extracted workflows. Both
authors individually inspected 80 answers that span over 80 participants and all
four scenarios to create two individual sets of activities. In a joined discussion, the
authors merged both lists, eliminated duplicates, agreed on activity labels, and
clarified overlapping cases. We ended up with the following list of activities. The
high-level concepts are only used for grouping and are not used as labels.

Start & End All workflows have the label Error notification as the start node
and the label End to indicate a fixed build.

Locating Activities in this category are related to understanding the error message
and to finding further information about the error.

• Most of the time, developers open the build log, either via a web browser or
through clicking a link in an email. The first step is then to Locate the Error

in the log to understand the type of error.

• We extract an Understand details activity, every time the developer state that
they look for information in the build log, like line numbers or test names.

• Many developers state that they Reproduce the problem, either locally on their
development machine or on a build host, to collect further information.
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Inspect Changes Once the error message is understood, developers often continue
to inspect the changes of the last commit or differences in the environments. We
differentiate the following activities.

• The most common activity to understand the root cause of an error is to Inspect

code changes that have recently been introduced.
• Another frequent activity is to Inspect the Config to understand recent changes
or differences in, for example, tools and environment.

• Developers check the version control system to Identify committers, either to
ask them for details or to delegate the fix of the build failure.

• Several developers state that they Inspect process documentation to understand
the reason for a change, for example, through release notes, a changelog, or an
issue tracker.

• Some developers mention that they Inspect the build history to extract his-
toric information about past builds, like previously failing builds.

Investigation Developers perform various steps to further investigate the failing
build and understand more details about the error cause.

• Many developers Read/Debug the affected source code. We combine both activities
in one node because it is often not clear which one is meant.

• Automated Static-Analysis Tools (ASAT) can provide diagnostic information
about a build, e.g., the dependency graph. We extract a Use ASAT activity when
developers apply them to find hints towards a solution.

• Sometimes, the build log is not enough and developers need to Consult external

logs, e.g., other log files or screenshot of the failing application.
• Often as a measure of “last resort”, developers perform a Websearch to find more
information or an illustration of the problem online.

• In some cases, developers state that they Lookup the documentation to under-
stand the meaning of a particular error message.

• To get further information about a change, it is sometimes necessary to Contact

an expert. This person is typically either familiar with the affected part of the
codebase or is the committer of the latest changes.
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Solution Attempt In the final phase of a workflow, developers state how they
approach the fix. We differentiate between five alternative activities.

• The most obvious activity is when a developer states that, after understanding
the problem, it is clear how to change the project to Fix the build.

• Various answers mention that they would use Automated Fixes, for example, an
environment’s clean-up, dependencies’ update, or an automated refactoring.

• A re-occurring strategy is to Delegate the Fix to someone else, usually to the
original developer who committed the change that caused the build failure.

• The answers contain descriptions of very strict workflows, in which developers
Revert commits to fix the build failure as quickly as possible.

• Developers, that come to the conclusion that the build failure is either irrelevant
or an incorrect state, Ignore the problem, e.g., by removing a failing test case or
by ignoring a quality check.

Verify Several authors describe steps to verify the solution, both locally and
remotely. We use the label Verify to represent these cases.

Exclude Several of the answers had to be excluded from our analysis. Instead of
extracting a complete workflow, we then only extracted a single label.

• We extract the label Not a problem in practice, whenever participants state
that this particular problem does not occur in their typical workflows.

• If we can not extract meaningful information (e.g., in case of an empty answer),
we treat the entry as an Invalid answer.

• In several cases, participants are not able to explain how they would approach
the problem in the stated scenario (I don’t know).

This set of activities was stable during the open coding session. The authors
did not find any description that could not be encoded with these labels.

Coding Rules In a first training iteration, the authors have encoded the 80
answers (20 answers per scenario) that have been used in the vocabulary step. This
step has first been performed individually. Afterward, the results have then been
discussed and merged into a joined encoding. As part of this merge discussions, the
authors have agreed on a set of coding rules that decide corner cases, in which the
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authors disagreed in their separated coding sessions. The authors then performed a
second training iteration separately (120 answers, 30 per scenario), using these rules
to test their applicability. The resulting workflows were discussed again, agreed on,
and the rules have slightly been refined. The authors ended up with the following
set of rules.

1. The initial state of a workflow is always an Error Notification. The end state
is always the End node, which indicates a fixed build. The participants do not
know what has caused the error, so unless developers explicitly mention that
they do not check, we include the Locate Error activity, through which they
understand the type of error that has occurred.

2. Locate Error informs about the error type (e.g., the build failed due to a com-
pilation problem), but it does not provide enough information for a Fix (i.e.,
Locate error → Fix is an invalid transition).

3. Just stating to read the log does not define any solution strategy and is considered
an Invalid Answer. Also, ambiguous statements are considered invalid. If missing
steps are implicit and clear from a mentioned strategy, we fill the gaps. However,
incomplete cases (e.g., when a “branch” in a case distinction is missing) are also
considered Invalid Answer.

4. We consider the answers of all four scenarios together, since some participants
do not repeat details that are mentioned before.

5. Running the debugger requires to Reproduce the Problem first. Please note that
Read/Debug can also just mean reading the code, which does not require to
Reproduce the Problem.

6. The activity Identifying committers needs a reason. Typically, this is either
done to Delegate a Fix or to Contact the Expert to understand further details.

These rules remained stable during the following open-coding session and both
authors used them to encode all remaining answers separately.

Validation A workflow consists of nodes and directed edges. The nodes have labels
that correspond to the established vocabulary, edges connect nodes to indicate a
sequence of activities. To make the individual workflows comparable, we wrote them
down in the Dot syntax for directed graphs. For example, a “diamond” workflow
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that does a and then either b or c, but ultimately always d, can be expressed in
the simple graph G { a→b→d; a→c→d; }.

After encoding all remaining 204 open answers separately, we validated the
reliability of our process. We could not calculate the traditional Inter-Rater
Reliability [18], because the resulting workflows are more complex than simple
labels that are either correct or not. Instead, we calculated the similarity of the
resulting workflows. We use a normalized hamming distance to calculate the
similarity of two encoded workflows [102]. The contained nodes and edges of the
graph build a set of graph elements, the more of these elements a workflow has,
the larger it is. When comparing two workflows, the set-size of the larger workflow
defines the maximum distance nmax between both workflows. We count the number
of elements nshared that both workflows have in common. The normalized distance
is then defined as d = nshared/nmax, which is bounded by 0 (completely different
workflows) and 1 (identical workflows).

After the coding phase of the remaining 204 open answers, we achieved a
perfect agreement in 105 cases (51.5%). The workflows, in which we disagreed
had an average similarity of 50.0%. Without looking at the other solution, both
authors re-coded theses cases and many cases turned out to be trivial mistakes
like forgetting the End node. After fixing these obvious mistakes, the agreement
increased to an exact match in 145 cases (71.1%), with an average similarity of
53.3% for the workflows with disagreement. All remaining disagreements were
solved in a joined coding session.

Aggregation After agreeing on the sorting results for all 101 participants, we
merged the individual workflow descriptions into joined representations. The
general approach was to simply overlay all workflows and to count how often
each of the nodes and edges occurs in the dataset. The result was a graph with
high complexity that was caused by various infrequently named transitions. To
remove rare activity sequences that blur the overall picture, we have filtered activity
sequences (i.e., edges) that were described less than three times. A straightforward
implementation of this filtering would just leave out these edges from the graph,
which would not only result in inconsistent counts, but it can also result in invalid
workflows with “gaps”. To preserve this consistency and, at the same time, to
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preserve as much information from the workflows as possible, we performed a
branch elimination: We checked for each workflow whether it contained any of the
filtered edges. If found, the edge was removed and so were all the previous and
following edges that were not reachable otherwise. As an illustration, consider the
previous example graph G. Assuming that the edge c→ d is rare and should be
filtered. In this case, we would not only remove c→ d, but also a→ c, which would
otherwise create a “loose end”. We preserve the sequence a→ b→ c in the graph,
but count the workflow as a partially filtered case. In case the branch elimination
removes all steps, we filter the whole workflow and count it as a filtered case.

The results of this aggregation are shown for the four different scenarios in
Figures 5.7-5.10. Both the nodes and the edges contain counts that indicate how
often the respondents have mentioned it. For the edges, we adapt the line width
depending on the count to highlight the most common flows.

Extracted Workflows

In this section, we describe the workflows that we have identified for the main
build failure categories. We illustrate the main steps that lead our participants to
the resolution of the failures and we discuss the differences among the resulting
workflows.

Compilation Failures (Figure 5.7) After being notified developers typically locate
the error that informs about the compilation failure. In many cases, they need
to understand further details from log such as the line number where the error
occurs. This is often sufficient to immediately fix the problem. However, a few
more steps are sometimes needed. Developers reproduce the failure locally (even
immediately after the error notification or locating the error) and inspect changes
made to environments such as a recently-introduced new version of the compiler.
Others read the source code to increase their knowledge about the part of the
system affected by the error. A few developers identify the authors of the last
commits included in the failed build and ask them to fix the failure. Finally, only
8 developers verify the fix before committing it. Overall, compilation failures are
considered relevant by the majority of our participants. Only 5 of our participants
do not encounter these types of failures.
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Dependency Failures (Figure 5.8) Understanding the type of failure is the first
step performed by developers when they run across a dependencies failure. Before
directly applying the fix, the majority of our developers investigate additional
information in the build log such as which dependency is missing or broken. In
some cases, the information contained in the log is not enough to fully understand
the problem and fix it. Thus, developers reproduce the failure locally (some of
them avoid to fully inspect the log before) and depending on the severity of the
problem they look at the differences between the local and remote environments
(e.g., the dependency is available locally but not on the remote server). Others
read source code requesting the dependency reported in the log or they search
the Internet for similar failures. Finally, in a few cases, they verify the applied fix
before committing it. Also in this case, only 5 participants consider dependencies
failures as a problem not occurring in practice.

Testing Failures (Figure 5.9) Developers start fixing testing failures identifying
the build failure type in the log. While a minority immediately reproduce the failure
locally or start identifying people committing the last changes, many developers
inspect the build log searching for the tests that did not succeed. Then 4 possible
directions are taken before the problem is fixed. The majority of developers decide
to investigate the test failure locally. They reproduce the last build and, if needed,
debug the failed test or inspect the configuration files. Other developers inspect the
history of code changes to identify (i) which was the previous version of the test or
the code under test and (ii) which were the previous developers working on them.
The goal of identifying committers is two-fold. On the one hand, developers can
contact them to ask questions about the failure and generally to receive support
while fixing the test. On the other hand, developers can delegate the fix to them.
Surprisingly another direction is to ignore the failure. This happens when the code
under test is not used or the test is obsolete or flaky (see Section 5.4.3). The last
option is to immediately fix the problem based on the information retrieved from
the build log. In a few cases, the fix is also verified. Testing failures are experienced
almost by all participants. Only 5 developers do not consider them a real problem
in practice.
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Code-Analysis Failures (Figure 5.10) Code analysis are the failures with the
highest percentage of “Not a problem in practice” answer (from 27 participants).
These participants do not check for code quality during the build or, when it
is checked, poor code quality is not set as a failing condition for the build. As
regards the resolution workflow developers start investigating the type of the
occurred failure. Then they either inspect the log to have more details about the
warnings raised by the static analysis tools that provoked the failure or identify
the committers of the last changes included in the failed build. The former step is
used to judge the failure. If the violations are considered relevant developers apply
the fix using the description available in the log. Otherwise, developers decide
to ignore the violations and disable them in the configuration files of the invoked
static analysis tools. The goal of the latter (that is sometimes performed without
understanding more details from the log) is to delegate the fix to the authors of
the last changes.

General Insights and Actionable Results

After discussing the four merged workflows separately for each scenario, we now
reflect on observations that affect multiple of these workflows. Some interesting
insights only appear when the various workflows are being compared.

Build failures are very rarely solved in a collaborative effort. Few developers
mention that they get in contact with the authors of the “implicated” commits while
fixing compilation, testing, and code-analysis failures. In the case of compilation
and code-quality issues, the only purpose is to delegate the fix to them. For some
testing failures that they feel competent to fix, developers get in contact with the
committers to have more information about the change causing the failure and
to receive feedback about the resolution strategy. Developers always try to solve
dependencies failures themselves.

Developers often reproduce the failure locally to ease the task of inspecting the
root cause in the code. If a build failure cannot be reproduced some developers also
start inspecting differences between local and remote environments, suspecting that
they caused the failure. While for other build failure types understanding details
from the log is often sufficient to fix the error, most of the developers reproduce a
testing failure locally before fixing. This means that the typical textual description
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of the errors contained in the log is only a starting point for the investigation. To
devise a resolution strategy developers also need to understand the semantic of the
changes causing a testing failure and possibly debug the failure to identify bugs
captured by the test. In such a workflow a better summarization of the build log
would not help to plan a fixing strategy and solution hints are needed. However,
websearch (which is the basis of our solution hints as described in Section 5.2.3) is
rarely used and only to search for solutions to dependencies failures.

Code-analysis failures are considered “second-class” failures by many developers.
They do not encounter build failures due to code-quality issues and such mistakes
are typically unimportant/omittable and not worth scheduling during the build.
Even when code-analysis is a proper step of the build, developers typically inspect
the log not only to understand the issue causing the failure (that is typically easy
to fix based on the description) but also to judge the violations and decide whether
fix or ignore them.

Ignoring a failure is a much more common reaction for code-analysis failures.
From the answers, the main reason seems to be that the high false-positive rate
makes it necessary to ignore false warnings. Also, test failures are sometimes
ignored, but here changing requirements are often named as the cause. The test is
then ignored to give time to clarify requirements or fix implementation.

Developers often trust their devised solution. Only a few developers verify their
solution, before integrating it into the master branch. This contradicts one of the
key principles of CI, that is “run private builds” [25]. According to the principle,
developers should emulate an integration build on their local workstation after
committing their changes in order to prevent new build failures on the mainline.

Coming back to our initial observation on how StackOverflow-based solution
hints do not work for some categories, the most interesting insight from our study
is that searching the internet for solutions is not a common practice. In the case
of compilation, dependencies, and code-analysis failures developers often rely only
on the information contained in the log. This confirms that a summarization
approach pointing to the relevant information in the log can avoid the burden of
inspecting thousands of lines of code and be sufficient to plan the fix. In the case
of testing, developers need instead additional information to devise a fix strategy.
However, our solution hints were considered irrelevant. Based on the workflow in
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Figure 5.9, the reason is that developers typically reproduce the failure locally and
debug it to guide the resolution process. Testing failures are too project-specific to
search the internet for general solutions. Future extensions of Bart should ease the
reproducibility of build failures and its solutions hints provide developers with the
semantic content of the change causing the test failure.

5.4.3 What Types of Build Failures Are Hard to Fix?

In the previous section, we have analyzed the most common workflows while solving
build failures. Our participants typically start collecting relevant information about
the problem and then try to understand it. In most of the cases build logs are
enough to locate the error while especially in case of testing failures developers
also need to reproduce the failure locally. As the answer to Q1.1, 62.4% of our
respondents believe that understanding the problem is the hardest part. Instead,
19.8% think that finding relevant information is the most time-consuming activity,
while 17.8% spend the same time both on collecting information relevant to the
failure and on understanding the problem. We further investigate those two phases
of the build resolution process and ask our participants in Q1.2 and Q1.3 which build
failures are more difficult to inspect (i.e., require more time to collect information
about their root causes) or which ones are instead harder to understand. We
performed card-sorting to identify the recurring concepts in the answers to these
questions and obtained the results presented in Figures 5.11a and 5.11b.

Failures Hard to Inspect Most of our participants consider infrastructure prob-
lems as the hardest to inspect (Figure 5.11a). They struggle to locate misconfigu-
rations of the CI workflow that causes failures (e.g., the CI server is not able to
fetch new changes from the remote repository) or locating errors that are caused
by a poor definition of the build scripts. The second most cited failures (failures
with inadequate logs) in Figure 5.11a do not relate to a particular category of
failures. Failures sometimes happen on servers that are external to an organization,
producing logs that cannot be accessed by developers. And build logs are often
simply not enough to fully locate the cause of the failure. In the presence of
Dependency breaks, looking for conflicting dependencies takes a long time for 11
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participants. Also the fourth most-mentioned failure (Unreproducible failures) is
not specific to a particular failure category. These failures cannot be reproduced on
the local machine of the developers and their build log is often not sufficient to fully
locate the failure’s cause. Developers need to replicate the error locally to generate
additional log statements (e.g., by making Maven logging more verbose with the
-V option) or reports (e.g., JUnit reports). Reproducing failures is sometimes
impossible because of a significant difference between developer’s and the remote
build’s environments. Other failures that developers find hard to investigate are
caused by defects of the third-party tools that are used during the build. These
failures are usually caused by unmet requirements (e.g., a specific version of the
compiler is missing). Several participants reported test and compilation failures
without providing a specific reason. Finally, 8 participants answered that looking
for the error cause is straightforward (independently from the build failure type)
while other 2 spend a lot of time in understanding all types of build failures.

Failures Hard to Understand Figure 5.11b illustrates the build failures for which
our participants state that understanding is more difficult when deriving a fix.
Despite finding the error that causes a testing failure is hard only for 7 participants
(see Figure 5.11a), those failures are mentioned as the hardest to figure out. In this
category, many developers mention integration and flaky tests. The second hardest
type of failure is infrastructure problems. Developers report misconfigurations
of the CI workflow and poor-defined build scripts as reasons. Many developers
spend a long time not only on locating the outdated dependency but also on
finding the right fix strategy. This is the reason why Dependency failures are also
considered hard to fix. As in Figure 5.11a, also in Figure 5.11b 10 developers report
unreproducible failures. The impossibility to reproduce the failure not only makes
it hard to locate the error, but slows the understanding process down. Developers
cannot verify (and refine) a hypothesized fix strategy without running a new build
on the remote server. Third-party tools’ failures sometimes require to replace a
particular tool due to incompatibility with others used during the build or, in case
of defects, as a temporary fix before the next update. This can take a long time and
involve multiple developers. Finally, a few participants mention also compilation
and code-analysis failures as the most time-consuming to understand. Only four
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participants consider fixing all build failures a trivial task while one considers all
types of build failures difficult to fix.

Cross-cutting Failures While the others can be directly mapped to known build
failure types [134], infrastructure problems, failures with inadequate logs, and un-
reproducible failures are cross-cutting categories that are not associated with a
particular stage of the build process. A failure with inadequate logs indicates the
problem of having build failure logs that do not contain enough information to
start inspecting the failure’s cause (sometimes the build log is not accessible). Un-
reproducible failures are build failures that cannot be reproduced in the developer’s
machine. Infrastructure problems are heterogeneous and are also perceived by many
developers as both hard to inspect and understand. Figure 5.12 illustrates which
are the infrastructure problems reported by our participants as answers to Q1.2
and Q1.3. Note that the figure does not include answers that refer generally to
infrastructure problems without specifying the problem.

Different machines are involved in a CI workflow. Some of them are also not
directly controlled by an organization. Authentication errors provoked by wrong
credentials or network problems bringing about the unavailability of servers are
mentioned by several participants as causes of build failures. Poor build scripts
(e.g. scripts which contain hard-coded credentials or other security smells, can
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be susceptible to security breaches [94]) contribute to generating build failures.
One participant mentions inadequate hardware. It can slow down the development
process and generate server timeouts.

Discussion of Painful Build Failures Previous work [134] has shown that the
most recurrent types of build failures are compilation, dependencies, testing, and
code-analysis failures. While only a few participants mention compilation and
code-analysis, our study on the perception of build failures reveals that testing and
dependencies failures are also considered particularly hard to understand. These
results confirm the importance of assisting developers during these types of failures
and especially in case of testing failures that are considered as the most difficult
among all the mentioned failures. Our build summarization approach increases the
understandability of both categories. Together with a few “known” categories, new
ones emerged from our analysis as the most painful categories. Those failures do
not relate to a specific build phase and are not the direct consequence of committed
code changes. They are caused by choices made while configuring the build process.

Developers use configuration files to define which tools are needed during
the build and which are the requirements of the environments where the build is
performed [34]. Depending on how the build process has been configured developers
can encounter failures that are related to the infrastructure, i.e., the way those
tools are connected and invoked during the build process. As shown in Figure 5.12,
those failures can be caused by authentication or network errors between connected
tools that are often hosted on different servers. Poorly defined build scripts or
configuration files that define the build process lead to the introduction of smells,
that are symptoms of deeper problems in the build process definition [34]. For
example, build smells are indicative of security weakness [94] or misuse of CI
features [34]. Based on our results, the presence of these smells also decreases
the understandability of build failures. In the presence of less comprehensive
build scripts, developers have difficulties understanding what to change in the
configuration to resolve the failure.

Developers can control the amount of information that is generated by tools
invoked during the build process through log statements. Having short logs reduces
the amount of information developers have to read, but increases the time needed
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to find relevant information and makes the failures even harder to be understood.
Our summarization approach tackles this problem pointing developers directly to
relevant information in verbose logs.

Developers can also configure the environment, in which the build is performed.
Those environments are usually very different from the local environment, in which
developers implement code changes. For example, using several operating systems
or different versions of a compiler. Reproducing an error is a crucial step towards
understanding, but when a failure occurs on the build server, developers find it very
difficult to reproduce the error in cases, in which local and remote environments
are significantly different.

Among the most recurrent types of build failures, testing and dependencies are
considered hard to fix. Furthermore, other failures that are not build-phase specific
and are instead caused by the misconfiguration of the build process are considered
painful.

5.5 Discussion

In this section, we discuss the main findings of our study and their implications for
researchers and practitioners.

For the RQ1, we found that summaries improve the understandability of the
build logs as it happens for source code [80]. Developers unanimously agree that
build summaries improve the understandability of build logs across the most
recurrent categories of failure.

In RQ2, we discovered that improving the understandability of the build failures
has a direct impact on the time needed to solve them. Across all the categories
covered in our study, build summaries speed up the build fixing process: the time to
fix is reduced by 23% in case of testing failures, by 20% in presence of compilation
errors, by 43% in case of dependency-related issues, and even 62% in case of code
violations. On average, developers using our tool spend 37% less time on solving
build failures.
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Among the hints included in our summaries, there is a category of hints that
are generated by mining build failure solutions from StackOverflow discussions.
The applicability and relevance of the proposed solutions are quite high in case of
compilation and code analysis, less in case of dependencies failures. Furthermore,
most of the times the solutions proposed for testing failures are not considered
valuable. In RQ3, we found that this is mainly caused by the lack of semantic
information. Testing failures are project-specific and search for the root cause on
the internet is not effective.

Although solution hints from the internet are ineffective, in RQ4 we observed
that developers struggle mainly while fixing testing and infrastructure-related
failures. They find it difficult to derive a solution strategy for those failures and
more effective solution hints that leverage other sources than the internet might be
beneficial. Infrastructure-related failures do not refer to a particular build step and
they are not directly caused by committed changes. They are issues provoked by
the smelly configuration of a CI process.

Implications and Future Work Our findings have important implications for
both researchers and vendor of CI servers. Existing tools provide a build overview,
but refer developers to the build logs for details, for example, to understand the
reason for a build failure. Our results suggest though that build logs are difficult
to understand and that integrating summaries of the build failure into the build
overview can support the comprehension process.

Despite not automating manual activity, we show that providing solution hints
that link to external resources (i.e., different from the build logs) can be useful to
developers. They can provide additional context that can help to derive a solution
strategy, especially when the root cause of a build failure is unclear or when the
solution is non-trivial. So far, our infrastructure only considers StackOverflow
discussions as external resource. Future hint generators could consider other
resources, like generated reports or information about deployed libraries, to create
a more holistic picture of the failure.

A better context awareness of the summarization tool might help to overcome
existing limitations, e.g., solution hints for testing failures. Based on the build fix
workflows analysis, developers frequently inspect previous changes to understand
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the cause of the failure or simply for learning from solutions applied to the same
problems in the past. We argue that historical information and the semantics of a
change can be an important source of hints for suggesting fixes to build failures.

This work introduces a technique to support developers when fixing a build
break by providing them with summarization and solution hints. However, some
build breaks cannot be reproduced locally and need to be solved on the server.
Future work should investigate new ways of bridging this gap by considering
differences between the remote CI environment and the local IDE environment
when searching for solution hints. Novel debuggers, tailored to CI workflows, might
help to improve the effectiveness when fixing build breaks.

Code-analysis failures are typically perceived as easy to fix, yet, they are the
ones that benefit most from the adoption of our tool. Our participants also consider
solution hints for code-analysis failures to be very relevant in the build-fix process.
A comparison to other failure types indicates that developers tend to first judge
the code-analysis failure, to decide whether the failure is worth fixing or whether
it should be ignored. Solutions hints can support this decision by providing more
details about the warning. For example, in case of the violation ‘line is too long’,
a link to a related discussion of appropriate line length might help the developer
to decide whether the warning is indeed a violation. Tool vendors can further
support this step by ensuring that violation descriptions contain relevant contextual
information.

For specific types of build failures, i.e., infrastructure-related failures, that are
caused by weaknesses of the adopted development pipeline rather than by the
change committed by a developer future hint generators should be conceived. In
particular, by extracting information from different nodes (e.g., servers) of the
pipeline those generators must be able to provide developers with the location of
the error.

Assistance tools like Bart do not only have a positive effect on the developer that
fixes the build. Supporting the individual developer has the potential to increase
team productivity, because it reduce the team downtime that would normally
be caused by the build break. Future work should investigate novel build log
summarization techniques to reduce the required time even further.
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5.6 Threats to Validity

The work presented in this paper was carefully planned and executed, but several
threats to validity exist for our results. In the following, we will discuss them and
our mitigation strategies.

Threats to internal validity concern the confounding factors that might have
affected our results. We did not deploy our tool in a real industrial environment
and only created versions of the software with artificial errors to evaluate our tool,
which might not be representative of real errors. We tried to mitigate this by
injecting bugs that resemble the most common causes of build breaks [107, 134].
Also, injecting realistic faults is a common trade-off in the design of many other
studies (e.g., [87], [32]), so we strongly believe that our setting is valid. Another
aspect that might affect the reliability of our results is the complexity of systems
considered during the analysis. We tried to reduce this threat by considering build
breaks in our study, which belong to projects that are not too big, but at the
same time representative of real systems. It is also possible that our participants
didn’t fully understand the questions in our questionnaire. We have reserved time
before starting, to allow participants to ask questions about the experimental
procedure. Another threat is the manual time measurement that could introduce a
bias. However, the substantial differences that we have measured far exceed the
imprecision of the manual measurement. Other build summarizers might exist and
requiring our participants to read a plain-text build log could introduce a bias in
our experiment. However, we are not aware of any frequently used summarization
tools and we think that using the information that is available in a standard Jenkins
installation represents a valid baseline for our comparison. The subject understands
the treatment. However, we could not really hide the treatment. Given that all
participants have experience with Maven, every solution different from inspecting
the raw build log would have been considered the treatment. In CI typically breaks
are caused by recent changes, but our subjects do not have access to the history.
However, breaking changes are hidden in big commits that tangle several changes,
so a developer must first understand the error in order to know what to look for in
the commit. Learning effects might blur the results because Bart is always used in
the second task. We took strategies to mitigate this potential bias. Participants
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have been coached in the beginning and we made sure that all participants have
the required knowledge to fix build problems (in particular, all participants have
used Maven before). Developers have worked on tasks that affect different areas in
the systems and the workflows to address these problems differ, so we expect low
learning effects.

Threats to external validity concern the generalizability of our findings. We
considered only four types of build breaks in our study. However, those represent
the most relevant and recurrent categories of build breaks that have been observed
[10, 75, 107]. Furthermore, the participants in our study could be unrepresentative
of all kind of developers. We mitigated such threat trying to reach for both survey
and controlled experiment people with different programming skills, to make general
consideration about beginner and expert developers. Our tool, Bart, is the first
implementation of an approach for build logs summarization. The current design of
our study only looks at errors introduced by users. Future work should expand the
scope and investigate build errors that are caused by the environment of the build
server (e.g., different locale settings). The results presented in this work might not
generalize beyond the considered build failure types.

5.7 Related Work

This paper is related to three lines of research: works on build failures, source-code
summarization, and mining Q&A sites. In the following, we will discuss the most
related previous works from these areas and relate them to the work presented in
this paper.

Build Failures Prior studies have investigated the nature of build breaks. Miller [75]
found that the most recurrent causes of build failures in Microsoft projects are poor
code quality, testing failures, and compilation errors. Other researchers [10, 100]
studied the frequency of different build failure types in open-source projects, finding
that builds generally fail because of failed test cases. In our study, we focused on
the most common build failure types according to those studies. While several
works focused on one particular type of build failure, e.g., code analysis [142]
or compilation [107], Vassallo et al. [134] proposed a broader taxonomy of build
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failures. They have analyzed 418 Java-based projects from a financial organization
and 349 Java-based OSS projects and have identified differences and commonalities
of failures between industrial and open-source projects. Because we summarized
Maven build logs of Java projects, we decided to reuse this taxonomy to categorize
our build failures. Kerzazi et al. [50] have analyzed 3,214 builds in a large software
company over a period of 6 months to investigate the impact of build failures on the
development process. They observed a high percentage of build failures (17.9%),
which aggregate to a cost of more than 2,000 man-hours when each failure needs
one hour of work to be fixed. Vassallo et al. [129] found that the problem of fixing
build failures is even becoming more relevant in open-source projects. Developers
often cause build failures on the release branch and it takes (on median) 17 hours
to them. Some of these failures are noisy and complex [33]. Given that some builds
have a misleading or incorrect status, developers are required to carefully inspect
the build outcome to verify the presence of passing jobs. Thus, build failures slow
down the release pipeline and decrease team productivity because they interrupt
implementation activities [135]. This was one of the motivations for our study:
providing developers with a tool able to support them while fixing build failures
making the recovery process faster.

Existing plugins try to achieve the same goal. For example, Log Parser12 is
a Jenkins plugin that allows developers to add custom parse rules in the form
of regular expressions. Matching parts of the build log are then highlighted for
the developer. Bart pursues a different goal. It automatically selects the relevant
information with no effort required from developers and organizes this information
in summaries and by linking external information. Researchers proposed approaches
to automatically repair builds that break due to dependency [66], testing-related
issues [120], and that can be fixed by generating patches that are applied to buggy
build scripts [43, 64]. The focus of Bart is developer-oriented and complementary to
automated approaches. We assume that very often developer interaction is required
to fix a build. Therefore, we try to empower the developer by improving build log
understandability though summarization and linking to external resources.

12https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin

https://wiki.jenkins.io/display/JENKINS/Log+Parser+Plugin
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Source-Code Summarization During their regular work, developers have to cope
with a large amount of external data [41], e.g., bug reports or source code, which
is produced during software development. They need support while trying to
comprehend such data and summarization techniques can facilitate this process.
Several techniques have been proposed to summarize source code [80]. Haiduc et
al. [41] proposed automatic source code summarization leveraging the lexical and
structural information in the code. Moreno et al. [77] conceived a technique to
automatically generate human-readable summaries for Java classes relying on class
and method stereotypes in conjunction with ad-hoc heuristics. Other approaches
generate summaries from source code artifacts, such as code fragments [141] or code
usage examples [79]. Moreover, Panichella et al. [87] studied the impact of test case
summaries on the number of fixed bugs, proposing an approach that automatically
generates summaries of the portion of code exercised by each individual test. Other
researchers focused on the summarization of build reports [98] or user reviews [110].
Our approach complements these approaches and presents a novel summarization
approach for another important software development artifact, i.e., the build log.

Mining Q&A Sites Question and answer websites like StackOverflow have been
analyzed by several researchers to provide developers with helpful data during
software development. Ponzanelli et al. [88] enhance the IDE with Prompter, a
tool that automatically captures the code context in the IDE to propose related
StackOverflow discussions. Bart is very similar to this work, it is integrated into
the build server and acquires contextual information about failing builds to assist
developers with deriving a fix. Other researchers, investigated the impact of using
StackOverflow on development workflows. Vasilescu et al. [123] analyzed the
interplay between StackOverflow activities and code changes on GitHub. While a
switch to StackOverflow interrupts the coding, they were able to show a correlation
between visits of StackOverflow and code changes. Developers seem to frequently
switch between their IDE and StackOverflow when they get stuck, which supports
our assumptions of Section 5.2. Finally, other researchers generated summaries
for Java classes [139] and methods [127] by mining source code descriptions on
StackOverflow. We also extract information from StackOverflow but follow a
different goal, i.e., providing hints for build fixes.
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5.8 Summary
This paper presented Bart, a system that supports developers in understanding
build failures and effectively fixing them. Bart works on the build log, summarizes
build failures, and provides solution hints using data from StackOverflow. We
conducted an empirical study with 17 developers to assess the effect of Bart on
repairing build breaks. Our results show that developers find Bart useful to
understand build breaks and that using Bart substantially reduces the time to fix
a build break, on average by 37%. To explain observations in our experiment, we
have also conducted a qualitative study to better understand the workflows and
information needs of developers fixing builds. We found that typical workflows
differ substantially between various error categories and that several uncommon
build errors, for example, errors related to the infrastructure, are very hard to
investigate and to fix. These findings will be useful to inform future research in
this area.
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Abstract
An effective and efficient application of Continuous Integration (CI) and Delivery
(CD) requires software projects to follow certain principles and good practices.
Configuring such a CI/CD pipeline is challenging and error-prone. Therefore,
automated linters have been proposed to detect errors in the pipeline. While
existing linters identify syntactic errors, detect security vulnerabilities or misuse of
the features provided by build servers, they do not support developers that want
to prevent common misconfigurations of a CD pipeline that potentially violate CD
principles (“CD smells”). To this end, we propose CD-Linter, a semantic linter
that can automatically identify four different smells in pipeline configuration files.
We have evaluated our approach through a large-scale and long-term study that
consists of (i) monitoring 145 issues (opened in as many open-source projects) over
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a period of 6 months, (ii) manually validating the detection precision and recall on
a representative sample of issues, and (iii) assessing the magnitude of the observed
smells on 5,312 open-source projects on GitLab. Our results show that CD smells
are accepted and fixed by most of the developers and our linter achieves a precision
of 87% and a recall of 94%. Those smells can be frequently observed in the wild,
as 31% of projects with long configurations are affected by at least one smell.

6.1 Introduction

Continuous Integration (CI) and Delivery (CD) are widely adopted practices in
software development. A CI/CD pipeline automates the process of building, testing,
and deploying new software versions. There is plenty of empirical evidence for the
positive effects of using CI/CD, including early defect discovery [46], increased
developer productivity [124], and fast release cycles [25]. To achieve these benefits,
it is recommended to follow various principles and best practices. For example,
developers should build and test the software on every change that is committed to
a project’s version control system [27]. Several catalogs of CI/CD best practices
exist [25, 26, 47, 103], but while their adoption has been advocated in research
papers, white papers, and books, developers have difficulties to apply them in
practice [45], deviating from principles and generating anti-patterns [129].

Some of these anti-patterns are related to the way developers use a CI/CD
pipeline. For example, developers do not integrate their changes frequently or
they remove failed tests to repair a build failure, and previous researchers [129]
implemented tools that help developers avoid those bad practices by analyzing
logs and past changes. Other anti-patterns emerge when the CI/CD pipeline is
configured. To support developers when configuring CI/CD pipelines, DevOps
build servers such as GitLab1 can validate their configuration files using online
linters.2 However, those tools only spot basic syntactic errors such as the use of
reserved keywords when naming build steps.

Previous works have proposed approaches for detecting misuses of specific
configuration options. Gallaba et al., [34] achieved a high user acceptance when

1https://about.gitlab.com
2https://docs.gitlab.com/ce/ci/yaml/README.html#validate-the-gitlab-ciyml

https://about.gitlab.com
https://docs.gitlab.com/ce/ci/yaml/README.html#validate-the-gitlab-ciyml
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Figure 6.1: Overview of the methodology for evaluating the usefulness of CD-Linter

pointing out the misuse of four different configuration options, like executing
commands in the wrong build step. Rahman et al. [94] focused on security-related
issues and Sharma et al. [108] on Infrastructure-as-Code (IaC) smells. While these
works show that semantic linting of CD pipelines is useful, they do not solve
the problem of avoiding CD anti-patterns in configurations files. For example, a
systematic manual job execution is not a misuse, but it violates a CD principle.

In this work, we want to help developers with configuring their CD pipelines by
helping them to avoid violations of accepted CD principles in their configuration
files. We propose a novel semantic linter named CD-Linter, to detect process-
related violations of CD principles, in the following referred to as “CD smells”.
CD-Linter is currently capable of detecting four types of CD smells that are related
to violations of principles and best practices described in the literature [26, 47].
We evaluated CD-Linter through a large-scale and long-term study consisting of
145 issues opened in as many projects. We monitored the reactions to those issues
over a period of 6 months and found that 53% of the project maintainers agreed
with the reported CD smells either accepting the issues (9%) or directly fixing
them (44%). We also analyzed the reasons for rejecting issues and use them to
further improve CD-Linter. Finally, we measured the accuracy of the latest version
of CD-Linter and investigated the occurrence of the four CD smells in the wild.
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The contributions of this paper can be summarized as follows:
1. The operationalization of four violations of CD principles in pipeline configu-

rations (CD smells), and the empirical validation of their relevance.
2. CD-Linter, an open-source semantic linter that can detect these CD smells in

configuration files of GitLab pipelines. We show that, overall, CD-Linter has
a precision of 87% and a recall of 94%.

3. A large-scale empirical investigation of the extent to which the considered
CD smells occur in a large set of 5,312 open-source projects.

All datasets and scripts used in our studies (together with CD-Linter imple-
mentation) are available in our replication package [130].

6.2 Methodology Overview

This paper investigates the problem of violating CD principles (i.e., CD smells) in
configuration files of CD pipelines. We propose CD-Linter, a semantic linter that
detects CD smells and evaluate its usefulness by answering the following research
questions:

RQ1: Are the four CD smells relevant to developers?
RQ2: How accurate is CD-Linter?
RQ3: How frequent are the investigated CD smells in practice?

Figure 6.1 provides a high-level overview of the different parts of this paper,
the details of the empirical study design will be covered in Section 6.4. Inspired by
existing literature in this area, we started by selecting four CD smells that affect
the definition of CD pipelines (1) (Section 6.3.2 provides more details about the
selection). To study these CD smells, we selected a dataset of 5,312 open-source
projects that are publicly available on the GitLab platform (2). We built detectors,
ran them against the dataset, and incrementally improved the corresponding
detection strategies (3). The four CD smells types and their detection strategies
will be introduced in Section 6.3.

Initially, we detected 5,237 smells in our dataset (4). To validate the relevance
of the selected CD smells and the correctness of our detectors, we started to open
issues in the issue trackers of the affected open-source projects. We used feedback
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from the early iterations to further improve the detection strategies, once we were
confident that the detectors work properly, we created a balanced sample of 168
issues (5). After validating the reports manually, we rejected 23 issues and posted
the approved 145 issues to the issue trackers of the corresponding open-source
projects. We then monitored how professional developers reacted to the opened
issues for 6 months (6). In Section 6.5.1, we will answer RQ1 by analyzing the
internal rating of the authors and the reactions of the original developers to our
reports (7).

The feedback that we received through rejected issues also enabled us to further
improve our detection strategies, which reduced the total number of identified
issues to 5,011 (4). We created a stratified sample of 868 issues to validate the
precision of our detectors on a large scale, while we validate the recall by manually
inspecting 100 projects (8). The sample size made it infeasible to open further
issues on GitLab, because we could not have followed-up on all of them, so we only
rated the validity of these issues internally. Our rating provided the required data
to answer RQ2 (9), which will be discussed in Section 6.5.2.

Finally, we analyzed the results for the complete dataset of 5,312 projects to
investigate how frequently CD smells occur in practice (10). These results will be
discussed in Section 6.5.3.

6.3 CD-Linter Description

Organizations implement CD pipelines using pieces of technology such as Jenkins,
TravisCI, or GitLab. While this paper copes with build-server agnostic smells,
we implement CD-Linter on GitLab. GitLab is an integrated platform that hosts
both the repository and the issue tracker, which is particularly interesting for
our evaluation. In February 2020, a search via the GitLab API revealed that the
site hosted more than 1.57M projects. As GitLab can also be used in private
installations, this makes it a very popular solution for enterprises.3 By supporting
GitLab, CD-Linter targets industrial and open-source projects alike.

3https://about.gitlab.com/analysts/forrester-cloudci19

https://about.gitlab.com/analysts/forrester-cloudci19
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6.3.1 Background

In the following, we provide some background information about the relevant
configuration parts for this work.

Build Server A build server is a reusable infrastructure, which enables developers
to define custom CD pipelines and is configured through configuration files. In
GitLab the configuration file is .gitlab-ci.yml; other build servers have similar
configuration files.

An example of such a configuration file is shown in Figure 6.2. In the top part
of the file, the stages of the build, that every change committed to a version control
system as Git has to pass during the build, are defined. If no stages are defined,
the default stages in GitLab are build, test, and deploy. The automation tasks
are defined as jobs, the basic unit of the CD pipeline. The example defines two jobs,
code_quality and unit_test, which invoke specific shell scripts that are defined in
the script line. For example, a Java project could include the script line script:

mvn test to start all unit tests through the Maven build tool. Developers can also
configure when to run a job (e.g., when: manual), how many times a job can be
auto-retried in case of failures (e.g., retry: 3), and whether a job is allowed to
fail (i.e., allow_failure: true).

Specialized Build Tools In addition to the configuration of the high-level or-
chestration of the build pipeline, most CD pipelines use specialized build tools to
perform the actual automation tasks, which require separate configuration parame-
ters. In contrast to the build server, these build tools depend on the programming
language that is used in the project. For this paper, we chose to support the
typical build tools of Java and Python to have two representatives for strictly-typed
and dynamically-typed languages. The typical configuration differs between these
languages and is too complex to be covered here. We will introduce the relevant
bits, once we have described the CD smells that we are going to support.
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stages:
- build
- test

...

code_quality:
stage: build
script: "mvn sonar:sonar"
when: manual # Manual Execution

unit_test:
stage: test
script: "mvn test"
retry: 3 # Retry Failure
allow_failure: true # Fake Success

Figure 6.2: Example excerpt of a GitLab configuration

6.3.2 Selection of Relevant CD Smells

CD-Linter features the implementation of an initial set of CD smells to be evaluated.
Clearly, there may be many smells in CD pipelines (e.g., Duvall [26] defined 50
anti-patterns). Practically speaking, a CD-Linter can detect a limited subset of
smells, and, being a linter, only those that can be statically identified. Therefore,
we aimed to find a set of suitable CD smells, not all the most relevant ones. We
collected all the good and bad practices that are illustrated in the Foundations
part of Humble and Farley [47], a well-known book about CD practices. Some
CD smells require historical information for the detection (using artifacts like
logs or repositories), which is only available after the CD pipeline is being used
and not when it is configured [129]. This is out-of-scope for a static linter, so we
judged the feasibility of detecting the anti-patterns from configuration files alone,
without relying on other artifacts. The complete list is available in our replication
package [130] and we selected four CD smells.

Fake Success Each stage of the CD pipeline checks for several categories of
defects. For example, jobs executed in the code quality stage can reveal the
presence of poorly-written code snippets, while jobs in the test stage typically



194 Chapter 6. Configuration Smells in Continuous Delivery Pipelines

spot bugs at unit and integration levels. Every executed job should be able to fail
the build. If not, developers can miss or ignore the underlying issue, which adds
technical debt and might result in problems later. A Fake Success arises when a
failure in a job does not affect the overall build result.

Retry Failure The build process has to be deterministic. Flaky behavior, e.g.,
tests that sometimes fail [65], should be avoided at any cost, because they hinder
development experience, slow down progress, and hide real bugs. Some pipelines
address this issue by rerunning a job multiple times after failures. However, this
might not only hide an underlying problem but makes issues also harder to debug
when they only occur sometimes.

Manual Execution CD means to keep the code base in a deployable stage at
any given time. Thus, a fully automated build process up until the deploy stage
is required. Manual jobs might introduce errors and delay the delivery of code
changes to the customers. This CD smell occurs when a job (that is executed
before the deploy stage) needs to be explicitly started by a user.

Fuzzy Version Developers should always specify the exact version of the external
libraries that are used. If not, a build could not be reproduced. Failing to be
specific on versions also leads to an occasional long debugging session tracking
down errors due to the use of different library versions. Using the terminology of
semantic versioning, we differentiate between the following sub-types of the smell:
(i) Missing Version: No version number is defined; (ii) Only Major Version: Only
a major release number is defined; (iii) Any Minor Version: Any equal or higher
minor release with the same major version is allowed; or (iv) Any Upper Version:
every equal or higher version can be used.

6.3.3 Parsing CD Configuration Files

To detect the CD smells, we parse the configuration files and map their content onto
meta-models that we have created for each type of configuration files CD-Linter
supports. These meta-models cover the parts of the configuration files that matter
for the detection of the CD smells. CD-Linter considers three types of configuration
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<project>
<modelVersion>4.0.0</modelVersion>
<groupId>a</groupId>
<artifactId>b</artifactId>
<version>0.0.1-SNAPSHOT</version>
<properties><x.version>1.0.0</x.version></properties>
<dependencies>

<dependency> <!-- correct -->
<groupId>foo</groupId>
<artifactId>x</artifactId>
<version>${x.version}</version>

</dependency>
<dependency> <!-- Missing version -->

<groupId>bla</groupId>
<artifactId>blubb</artifactId>

</dependency>
</dependencies>
<modules><module>module-example</module></modules>

</project>

Figure 6.3: Example of a pom.xml file

files used for GitLab (.gitlab-ci.yml), Maven (pom.xml), and pip (requirements.txt).
In the following, we describe how we parse these configurations for our purposes.

GitLab Configuration From the .gitlab-ci.yml file, we capture the list of jobs, the
stages, and the variables. For each job, we record the name, the stage, and the script
lines (script, before_script, after_script) as well as the retry, allow_failure,
when, and environment parameters. For the retry parameter, we keep track of the
maximum number of retries (max) and for which kinds of failures the job is allowed
to be retried (when). We filter out dot-prefixed jobs as GitLab does not process
them.

Maven and pip Configurations The Maven build tool is very popular among
Java projects. Maven can automate various tasks, for example, the dependency
resolution and automated download from a centralized repository. Figure 6.3
shows a configuration excerpt (“pom.xml”), in which two dependencies, foo.x and
bla.blubb are being defined.
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From the pom.xml, we capture the unique coordinates of the artifact (artifact ID,
group ID, version), all defined properties, and the coordinates of all dependencies.
All properties are automatically replaced with their actual value. We also include
all referenced modules recursively and link them together. Values such as versions
are then inherited from ancestor POMs where available.

As regards pip, the most used package manager for Python code, two things
are relevant. First, the file requirements.txt is often used to define all dependencies
that are required in the Python environment to run a particular piece of software.
These requirement files can be hierarchical and include other requirement files
that are inherited. Second, the script line in the GitLab configuration file often
contains manual calls to pip to download external dependencies. To find these, we
search for the keyword pip install, strip other pip options, and remove quotes
from the arguments. It is also possible to specify dependencies by pointing to files,
folders, and URLs to version control systems. We use simple heuristics to detect
these cases and exclude them from the linting.

6.3.4 Detection of the CD Smells

Having access to the parsed information in the meta-models, we could proceed to
implement the various analyses that detect instances of the four CD smells.

Fake Success The allow_failure parameter set to true allows a job to fail
without impacting the rest of the build. Figure 6.2 shows an example in which
the build execution can succeed despite potential errors in the unit_test job. We
detect a Fake Success every time a job’s definition contains allow_failure: true.
Note that we do not report Fake Success for the stages sast (static application
security testing) and dast (dynamic application security testing). GitLab defines
templates4,5 that contain allow_failure set to true for the default job used in the
these stages.

Retry Failure The retry parameter allows developers to configure how many
times a job is going to be retried in case of a failure (see the example in Figure 6.2).

4https://docs.gitlab.com/ee/user/application_security/dast
5https://docs.gitlab.com/ee/user/application_security/sast

https://docs.gitlab.com/ee/user/application_security/dast
https://docs.gitlab.com/ee/user/application_security/sast
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We detect all cases in which retry is set to a positive value. The proposed solution
for such a case is to control retry by matching a specific failure cause (e.g.,
when:runner_system_failure). We only found very few cases in which projects
used when, so we decided to simplify the detection in CD-Linter and report all
such usages of retry for now. Handling these cases properly is a simple matter of
implementation.

Manual Execution The when parameter can also be used to specify when a job
shall be executed. To detect manual triggers of steps, we selected all jobs that
contain when:manual in their definitions. For example, job code_quality in stage
build (Figure 6.2) needs to be manually started by a user.

Not all manual triggers are a problem though. CI/CD advocates the automated
execution of all stages to ensure a releasable project state at every point in time,
however, it is acceptable to manually decide when this release should happen.
Therefore, we do not report cases in which the manual execution only affects
deploy stages. Apart from using the default deploy stage, GitLab users can also
define custom deploy stages.6 To build a comprehensive list of deploy stage names,
we extracted the stage names from a random project sample of our dataset (see
Section 6.4). We identified all keywords that hint at a deploy stage such as ‘deploy’,
‘release’ or ‘publish’ and exclude jobs and stages that contain these keywords in their
name. Also, we did not report Manual Execution for jobs in the triage and review

stages, because GitLab suggests that these stages should be started manually.7,8

Furthermore, we exclude cases where the action parameter of environment is set
to stop, which used to define a manual way to shutdown an environment that is
used in the build.

Fuzzy Version The way dependencies are declared is specific to the programming
language and the corresponding dependency management tool. For what concerns
versioning, CD-Linter supports Python and Java projects (the latter using Maven).
Table 6.1 shows a comparison of the version syntax.

6https://docs.gitlab.com/ee/ci/yaml
7https://docs.gitlab.com/ee/ci/review_apps
8https://gitlab.com/gitlab-org/gitlab-triage/blob/master/.gitlab-ci.yml

https://docs.gitlab.com/ee/ci/yaml
https://docs.gitlab.com/ee/ci/review_apps
https://gitlab.com/gitlab-org/gitlab-triage/blob/master/.gitlab-ci.yml
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Table 6.1: Fuzzy Version syntax in Python and Maven

Fuzzy Version type Python Maven

Correct ==1.1.8 1.1.8
Missing Version empty empty
Only Major Version 1 1
Any Minor Version 1.* n/a
Any Upper Version >=1.1.8 [1.1.8,)

Python projects typically use pip to manage their dependencies and our meta-
model contains information about all dependencies that are either defined in the
requirements.txt file or through direct invocations of pip install. CD-Linter
distinguishes between several Fuzzy Version subcategories. (i) If no version is
defined, we report a Missing Version, (ii) if a version specifier only consists of
a single number, we report an Only Major Version violation, (iii) a Any Minor
Version when the minor release number is an asterisk (*), and (iv) Any Upper
Version if the version number only defines a lower bound, but omits the upper
bound (e.g., numpy>=10.4).

In Java projects, dependency resolution is typically handled by the build tool. In
the case of Maven, dependencies are defined in pom.xml. To detect Missing Version,
we identify dependencies that do not specify a <version> tag. In dependencies that
define the tag, we detect Only Major Version as we do in Python projects and
Any Upper Version checking whether the upper version in a range is missing (e.g.,
[1.2.3,)). Any Minor Version is impossible by design, because at least a range will
be always declared for minor releases. When analyzing dependencies, CD-Linter
handles transitive dependencies by traversing the POM hierarchy recursively.

When reviewing the detection strategies (step 3 of Figure 6.1), we realized how
some libraries self-manage dependency versioning, e.g., as Spring Boot, a popular
framework for web apps, does. We have compiled a list of affected dependencies for
which we do not report a Fuzzy Version CD smell, because omitting the version is
acceptable in these cases.

As a reaction to developer feedback (RQ1), we differentiate between libraries
used in production code and tools used in the pipeline. Not specifying a version for
a tool is less critical, because no source code relies on an API that might break in
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newer versions. On the contrary, having a new version with fixed bugs and updated
features might even be desired. To this end, we compiled a list of tools used for
Python and Java projects. These include, for example, pipenv,9 pytest,10 pylint,11

and pip12 for Python, and JUnit,13 FindBugs,14 Checkstyle,15 and PMD16 for Java
(the complete list is in our replication package [130]).

6.4 Empirical Study Design

The goal of this study is to evaluate CD-Linter, to determine whether it could
be useful for developers to avoid CD smells in their CD pipeline. The quality
focus is two-fold: the perceived usefulness from original developers of projects
where CD smells are detected and the accuracy of CD-Linter. The perspective is
of researchers that have developed CD-Linter and want to transfer it to practice.
The context consists of 5,312 open-source projects hosted on GitLab and using CD.
More specifically, the study answers the three research questions formulated in
Section 6.2.

6.4.1 Context Selection

To answer our research questions, we selected open-source projects hosted on
GitLab. Using the GitLab API, we filtered projects that do not have at least one
star or that are forked from other projects to avoid duplicates. From the resulting
26,984 projects, we removed all the projects that do not contain a .gitlab-ci.yml
file in their repositories (i.e., do not use GitLab as CD server). The last filter left
us with 5,312 projects that we could analyze for the presence of CD smells. These
projects have a diverse team size (from 1 to 633 members with a median of 2)
and age (from 1 to 133 thousand commits with a median of 75). Regarding the
languages, our dataset mainly includes JavaScript (16%), Python (14%), C (10%),
Java (7%), Go (4%), and Ruby (4.4%) repositories. Also, there are projects with
varying CD adoption history.

9https://docs.pipenv.org 10https://pytest.org 11https://www.pylint.org
12https://pypi.org/project/pip 13https://junit.org/junit5
14http://findbugs.sourceforge.net 15https://checkstyle.sourceforge.io
16https://pmd.github.io/

https://docs.pipenv.org
https://pytest.org
https://www.pylint.org
https://pypi.org/project/pip
https://junit.org/junit5
http://findbugs.sourceforge.net
https://checkstyle.sourceforge.io
https://pmd.github.io/
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6.4.2 Monitoring of the Opened Issues

We first run CD-Linter on the dataset of 5,312 projects that has been described in
Section 6.4.1. Then, we identified a random set of CD smells in a way to achieve
(i) a balanced set of CD smells of each type, and (ii) at most one CD smell per
project owner, to avoid flooding the same owner with many issues. For Manual
Execution we could detect a maximum of 42 smells across owners, and we ended
up detecting a total of 168 CD smells.

Once the detected CD smells were uploaded to the CD-Linter web-based
platform, which can automatically report issues, each issue was shown to two
independent evaluators (two of the authors, one of which was not involved in the
CD-Linter implementation) to remove false positives (object of a different study
in Section 6.5.2). Each evaluator could read the report generated by CD-Linter,
browse the file in which the CD smell was found, and, if needed, browse the entire
repository and its history through a GitLab link. Once two evaluators reported
a positive assessment, the issue was automatically posted and opened on GitLab.
The disagreement cases were discussed and, in case of positive agreement, an issue
was also opened. In total, we opened 145 issues.

We have monitored the issues over a period of 6 months (from August 2019 to
February 2020). During this period, we collected 64 reactions, counting issues that
have been upvoted/downvoted, commented, assigned, or closed. 59 projects did
not show any activity during the observation period, so we decided to ignore them
in our analysis. The response rate of the remaining, active projects was 74%. We
performed a card sorting [111] of the received 120 comments to identify agreements
and disagreements with our issues and their motivations. The card sorting was
performed by two authors that, after a first round of independent tagging, met and
merged their annotations.

In addition to the reactions, we checked the source code to see whether a
reported smell has been removed or reintroduced in the observation period. In
some cases, the smell has been fixed despite a negative reaction or without any
reaction to the issue whatsoever.

Based on the developers’ reaction, issues have been classified into the following
5 categories.
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Ignored The issue has been closed without any further reaction.
Rejected The issue has been closed with a majority of downvotes or with negative
feedback from the comments.

Pending The issue is still open and under discussion among the maintainers without
a clear agreement/disagreement.

Accepted The issue has been assigned for fix, or has a majority of upvotes or
positive feedback.

Fixed The smell reported in the issue has been removed.

To address RQ1, we report and discuss the responses to the opened issues for
each smell type. We report the number and percentages of positive and negative
reactions, the rationale for rejecting the issues, and provide examples of positive
feedback and false positives. The results of RQ1 directly improved CD-Linter (see
Section 6.3.4).

6.4.3 Manual Validation of CD Smells

We executed the enhanced version of CD-Linter on the 5,312 projects, which
resulted in the detection of 5,011 CD smells. Then, we formed a sample to be
manually validated. We selected, for each owner, one CD smell of each type, if
detected. Since for Fuzzy Version we have four sub-categories, we considered one
of each sub-category (Missing Version, Only Major Version, Any Minor Version,
and Any Upper Version), if present. We obtained as result a sample that consists
of 868 issues and achieves an error margin of ±3% (setting a confidence level of
95% and a percentage of 50%). Then, similarly to what was done in RQ1, each
issue was independently validated by two authors. After each annotator concluded
the tagging, we measured the Cohen’s kappa inter-rater agreement (k) [18]. We
obtained k = 0.76, i.e., a high agreement, therefore no re-coding was necessary.
Finally, the two annotators discussed and solved the disagreement cases. To
address RQ2, we report the overall precision of CD-Linter on the validated sample,
defined as TP/(TP + FP ), where TP : true positives and FP : false positives. We
also computed the recall, defined as TP/TTP (TTP : total true positives), using
a randomly selected sample of 100 projects (methodology similar to Gallaba et
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al. [34]), making sure that those projects were not the same used to calculate the
precision.

6.4.4 Measurement of CD Smell Occurrences

To address RQ3, we run CD-Linter on the latest snapshot of the 5,312 projects
described in Section 6.4.1. The analysis has been performed on an Intel Xeon(R)
CPU E5-2640 with 2.50GHz (4 cores) with 4GB of available main memory and
took a total of 74 seconds. We report the number of CD smells of different types
we detected, as well as the percentage of projects and owners affected by at least
one CD smell of each type. The latter provides us with an idea of the diffuseness
of the considered CD smells.

6.5 Empirical Study Results
In this section, we will answer the three research questions and report on the results
of the study defined in Section 6.4.

6.5.1 Are the Four CD Smells Relevant to Developers?

During the observation period of 6 months, 64 projects reacted to our issues
(response rate of 74%), Figure 6.4 illustrates the reactions. Overall, 53% of the
project maintainers reacted positively to our issues: 9% acknowledged the presence
of a problem and are about to solve it, and 44% fixed the reported CD smells. We
have also verified that the fixes were not reverted later and could not find cases in
which the reported CD smells were re-introduced.

Developers took on average 50 days to fix a CD smell, with a maximum of 5.5
months and a minimum period of 1 hour. This high variation is unsurprising for
open-source projects because the activity level or the commitment of contributors
strongly depends on each project. The mean resolution time for different kinds of
smells was 31 days for Fake Success, 55 days for Retry Failure, 43 days for Manual
Execution, and 65 days for Fuzzy Version.

Looking at the negative cases, 9% of the issues were closed without reactions
(i.e., ignored issues) and 32% were rejected. Several project maintainers that
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Figure 6.4: Reactions to the issues opened to evaluate CD-Linter

rejected issues provided us with reasons why they want to keep the CD smell. We
found other cases in which developers rejected our issues simply because of a lack of
trust in automated issue-reporting tools. In the following, we describe the reactions
to each CD smell type (see Figure 6.4), the feedback we received when the issues
were rejected, and how we refined our detection strategies based on the analyzed
comments. We also report the percentage of false positives that we found during
the assessment stage.

Fake Success We found only one false-positive case and opened 27 issues that
report Fake Success cases, achieving a response rate of 70%. No issues were ignored,
10% of them were accepted, and the CD smell was removed in 37% of the projects.
9 opened issues (47% of the total) were instead rejected by the project maintainers.
In several cases, developers generally agreed on our reported violation but decided
to accept the CD smell nevertheless. Some developers prefer that non-essential jobs
may fail, for example, checks for outdated dependencies, execution of static analysis
tools, or external tools which might fail for unknown reasons. Other developers
allow jobs, that are not fully implemented yet and, thus, should not impact the
final build status, to fail. These projects typically state that they plan to remove
the CD smell when the pipeline design is completed. Another developer, while
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agreeing on the violation, did not fix the CD smell because allow_failure:true

is recommended for certain jobs that run static and dynamic application security
tests provided by GitLab. It is no longer necessary to use this configuration flag
explicitly (it has been moved to a template and will be used implicitly through
inheritance), but old tutorials still describe it as a best practice. While failing the
overall build because of warnings raised by static analysis tools or errors in external
tools is a key CD principle [25], we completely agree that projects should follow
configuration recommendations of their CD provider. CD-Linter recognizes these
cases and does not report them.

Retry Failure We found 7 false positives for Retry Failure issues, which corre-
sponds to 16.7% of the validated sample. We reported the remaining 19 smells
with a return rate of 58% (the lowest rate among all CD smell types). 9% of the
maintainers confirmed the existence of the problem and 55% removed the CD smell
from the configuration of their projects. Only 4 issues (36%) were rejected. This
CD smell seems to be introduced to “hide” flakiness instead of solving it, thus, we
decided to not modify our detection strategy. One developer mentioned that she
deploys her application to a remote service that is randomly failing. Because the
tool is out of her control, she decided to automatically retry the job multiple times
hoping that it will succeed without breaking the overall build.

Manual Execution Manual Execution is the category where we found the largest
percentage of false positives (26.2%), due to some periodic deployment jobs that
CD-Linter did not recognize. We opened 16 issues and achieved a response rate of
81%. While 8% of the reported CD smells were accepted and 38% were fixed, 31%
were ignored. Only 2 issues (15%) were rejected. In both cases, developers agreed
on the importance of detecting this CD smell, but they also provided reasons for
rejecting it. One of them set when:manual in a job executed in a stage that is not
fully integrated yet with the rest of the pipeline. This can be addressed by allowing
developers to directly configure CD-Linter and ignore jobs that are not part of the
CD pipeline. The other developer rejected the issue because of a lack of trust on
an automated reporting tool (CD-Linter). While this can be a threat to the study,
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it does not constitute a problem in a usage scenario where a developer uses the
tool herself.

Fuzzy Version We only found 3 Fuzzy Version false-positive instances, and we
could open 24 issues achieving the highest response rate (87%) among all CD smell
types. 9% of the reported CD smells were accepted and 48% fixed. While we cannot
learn from the 9% of the issues that were ignored, we used the comments from the
remaining 28% rejected issues to refine our detection strategy. Most complaints
concern the reports about tools for which the version is left unspecified. In contrast
to libraries, tools that are invoked in the pipeline (e.g., tools that compute code
coverage) should always be updated to the latest version, especially because they
might contain security improvements. Furthermore, tools are dependencies of the
project rather than of the source code. Thus, in the case of uncontrolled updates,
such tools would not affect the outcome of the build nor introduce errors, so we
decided to incorporate this feedback and exclude tools from the detection of Fuzzy
Version.

We received reactions from 74% of the projects. 53% of the project main-
tainers reacted positively to our issues, either accepting 9% or fixing 44%
the reported CD smells. In the rejected issues, we received precious sug-
gestions on how to improve CD-Linter, which we incorporated whenever
possible.

Answer to RQ1

6.5.2 How Accurate Is CD-Linter?

Table 6.2 reports the detection precision of CD-Linter. As the table shows, the
detection precision varies between 73% of Manual Execution and 100% of Retry
Failure and Fake Success, with an 81% for Fuzzy Version. Looking at the results of
Fuzzy Version for the different sub-types of CD smells, Table 6.3 indicates that
the detection precision is the lowest for the Missing Version category (77%), which,
however, is the most common one. Instead, when a version is incompletely specified
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Table 6.2: Detection precision for the four CD smells

CD Smell Type TP FP Precision

Fuzzy Version 454 107 0.81
Fake Success 213 0 1.00
Manual Execution 27 10 0.73
Retry Failure 57 0 1.00

Overall 751 117 0.87

Table 6.3: Detection precision for the Fuzzy Version subtypes

Type TP FP Precision

Missing Version 335 102 0.77
Any Upper Version 97 4 0.96
Only Major Version 20 1 0.95
Any Minor Version 2 0 1.00

(i.e., Any Upper Version, Only Major Version, or Any Minor Version CD smell),
the CD-Linter accuracy raises to 95% or above.

In the following, we discuss false positives. As shown in Table 6.2, we found no
false positives for Retry Failure and Fake Success. Note that this does not mean
that CD-Linter would always be correct in such cases because developers might
use these options for a specific, valid purpose.

For Manual Execution, false positives were mostly related to cases where the job
name, content, or even comments added to the .gitlab-ci.yml file suggested that
the job is related to a deployment activity that developers intentionally perform
periodically, and therefore manually trigger (e.g., issuing a release). Despite filtering
out jobs related to deployment, as explained in Section 6.3.4, we still encountered
unforeseen cases. Examples include a job named test-prerelase (the typo in the
job name made our filtering fail), but also a job named push, which was pushing
Docker images to a repository (this case may or may not be fully automated).
Also, the names of several jobs with the when parameter set to manual suggest that
they should not be manually triggered. However, both the implementation and
a comment left there indicate that developers intentionally configured a manual
job triggering. Future work could improve CD-Linter by using Natural Language
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Processing (NLP) techniques to analyze comments in CD configuration files to
infer the rationale of choices made by developers.

False positives of Fuzzy Version mostly relate to cases in which dependencies
for pipeline-related tools were lacking a version number. As a consequence of the
preliminary analysis conducted with developers in RQ1, we argue that libraries
used in production code should specify an exact version of a dependency, to avoid
build failures or introducing bugs. However, this may not be strictly necessary for
tools, because developers may want to always use the latest version to have fixed
bugs and enhanced features. We have derived an initial list of such tools after the
feedback from developers and exclude tools like coala17 (rule-based linter), sphinx18

(documentation generation), or wheel19 (packaging utility).

We estimated the recall of CD-Linter on a sample of 100 randomly-selected
projects. Two authors individually inspected the configuration files and agreed on
the presence of 90 CD smells. We applied CD-Linter to the same sample and could
detect 85 of the manually identified incidents, achieving a recall of 94%. 3 false
negatives were Fuzzy Version smells. Two of them were not occurring in script

lines while the other affected a requirements.pip file, a configuration file that is
not considered by our tool. The remaining 2 false negatives were Manual Execution
smells. Those smells were not detected by our tool because their names contain
deploy-related keywords. However, they were executed in the stages metrics and
build_unit_test. Section 6.3.4 established name-based inclusion/exclusion criteria
through inspecting a sample of projects, but it is not feasible to derive a simple
heuristic that can cover all cases.

We believe that future iterations of CD-Linter can remove these false negatives
by considering other features of the .gitlab-ci.yml (e.g., non-script lines in jobs)
or other files that are currently not supported, and by enabling developers to
configure their inclusion/exclusion criteria for job and stage names.

17https://coala.io 18https://pypi.org/project/Sphinx
19https://pypi.org/project/wheel

https://coala.io
https://pypi.org/project/Sphinx
https://pypi.org/project/wheel


208 Chapter 6. Configuration Smells in Continuous Delivery Pipelines

CD-Linter has a precision of 87% and a recall of 94%, with a perfect
(100%) precision for Retry Failure and Fake Success. The false positives
for Manual Execution and Fuzzy Version were caused by current limita-
tions of the tooling and can be addressed in the future.

Answer to RQ2

Table 6.4: CD smells in the analyzed projects and owners
(# is “number of” and % is “percentage of” analyzable instances)

Projects Owners

Smell Occurrences # % # %

Fuzzy Version 1,569 (54.6%) 320 37.1 242 37.0
Fake Success 633 (22.0%) 282 5.4 217 6.1
Retry Failure 532 (18.5%) 82 1.6 52 1.5
Manual Execution 140 (4.9%) 69 1.3 56 1.6

Overall 2,874 680 13.0 501 14.0

6.5.3 How Frequent Are the Investigated CD Smells in Prac-
tice?

To understand the frequency of CD smells in practice, we analyzed the latest
snapshot of 5,312 projects (as described in Section 6.4.1). Among them, 863
projects are either written in Java (and built with Maven) or in Python and,
therefore, qualify for an analysis of the existence of CD smells in the wild, including
Fuzzy Version, which is the only language-specific smell. Note that 136 of the
initially considered projects were then deleted and were not available for our
analysis.

Table 6.4 illustrates the occurrence of CD smells in the analyzed projects. We
detected 2,874 instances of CD smells that affect 13% of the projects (14% of the
investigated owners). Fuzzy Version is the most common CD smell (54.6%) and is
present in 37.1% of the analyzed projects. Fake Success and Retry Failure account
for 22% and 18.5% of the identified CD smells respectively. While Fake Success
occurs in 5.4% of the projects, Retry Failure is present in 1.6% of them. 4.9% of
the CD smells were Manual Execution and affected 69 projects (1.3% of the total).
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Table 6.5: CD smells across different .gitlab-ci.yml sizes
(# stays for “number of” and % is the percentage with respect to the total)

.gitlab-ci.yml Size

Small Medium Long

Smell # % # % # %

Fuzzy Version 206 13.1 564 35.9 799 50.9
Fake Success 5 0.8 70 11.1 558 88.2
Retry Failure 2 0.4 5 0.9 525 98.7
Manual Execution 5 3.6 14 10.0 121 86.4

Overall 218 7.6 653 22.7 2,003 69.7

# Projects 67 9.9 208 30.6 405 59.6

Humble and Farley advocate that a CD pipeline should be composed of at least
three separate stages, i.e., compile, test, and deploy [47]. However, organizations
can call those stages differently, introduce additional stages, and they can define
multiple jobs within one stage. This begs the question of whether more complex
pipelines are also more prone to contain CD smells, which would make a tool like
CD-Linter even more relevant. A qualitative insight from our manual analysis
of Section 6.5.2 indicated that longer .gitlab-ci.yml files seem to contain more
complex CD pipeline definitions. We decided to split the analysis and discuss the
different subgroups separately.

We distinguish three groups, small, medium, and long, and define these categories
through the first and third quartile over the length distribution of all .gitlab-ci.yml

files. Small .gitlab-ci.yml files have up to 15 lines (9.9% of the smelly projects
have them), while a long .gitlab-ci.yml file is of at least 55 lines (59.6% of the files
with CD smells are long). The other projects (30.6%) are medium. In Table 6.5,
we illustrate how CD smell instances are spread across the different clusters and
it is immediately clear that the cluster of long .gitlab-ci.yml files contains most
of the CD smells. The cluster with small .gitlab-ci.yml files includes 7.6% of
the detected CD smells, with 13.1% of the total Fuzzy Version smells, 3.6% of the
Manual Execution incidents, and a few of the other CD smell types. Projects with
medium .gitlab-ci.yml sizes contain 35.9% of the Fuzzy Version smells, around
10% of the Fake Success and Manual Execution problems, and 1% of Retry Failure,
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Table 6.6: Break-down of Fuzzy Version smell
(YAML is .gitlab-ci.yml, POM is pom.xml, REQ is requirements.txt)

File Type

Category YAML POM REQ Total

Missing Version 684 (48.4%) 120 (8.5%) 609 (43.1%) 1,413
Only Major Version 0 (0.0%) 6 (46.1%) 7 (53.9%) 13
Any Minor Version 0 (0.0%) 0 (0.0%) 3 (100%) 3
Any Upper Version 2 (1.4%) 0 (0.0%) 138 (98.6%) 140

Overall 686 (43.7%) 126 (8.1%) 757 (48.2%) 1,569

# Files 169 (44.6%) 43 (11.3%) 167 (44.1%) 379

achieving 653 smells (22.7% of the total). The last cluster with long .gitlab-ci.yml

files contains the majority of the identify CD smells (69.7%). 88.2% of the Fake
Success smells, 86.4% of Manual Execution incidents, and even 98.7% of the Retry
Failure affect this cluster. More than half of the Fuzzy Version instances affect long
.gitlab-ci.yml files. Within this cluster, we find that 40% of the projects have
Fuzzy Version smells, 17% have Fake Success incidents, 6% are affected by Retry
Failure and 4% contain Manual Execution. Overall, 31% of the projects are affected
by at least one CD smell. While all other CD smells have more occurrences than
Fuzzy Version, the density of Fuzzy Version in long files is similar to the density in
the whole dataset (see Table 6.4).

Being the most common smell, we further analyzed Fuzzy Version and investi-
gated its sub-categories concerning the different files that it can affect (Table 6.6).
Overall, the Fuzzy Version incidents are mainly detected in requirements.txt files.
Those files were affected by all Any Minor Version and (almost all) Any Upper
Version that we found, while Only Major Version is also present in several pom.xml

files. Missing Version is the most frequent Fuzzy Version smell (1,413) and it is
spread across the different files. While .gitlab-ci.yml has the highest number of
Missing Version occurrences (48.4% of the total), this Fuzzy Version type has 609
and 120 instances in requirements.txt and pom.xml respectively. Based on these
results, Fuzzy Version very frequently affect files different from .gitlab-ci.yml.
Thus, also CD pipelines that are not so complex (i.e., small .gitlab-ci.yml) can
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contain several Fuzzy Version incidents, which explains why this CD smell is not
only concentrated in long configuration files (Table 6.5).

The most frequent CD smell among the ones CD-Linter detects is the
Fuzzy Version CD smell (54.6% of the instances). Overall, CD smells
affect 13% of the analyzed projects and 14% of their owners, mainly oc-
curring in long configuration files.

Answer to RQ3

6.6 Threats to Validity

Threats to construct validity are related to possible imprecisions in our mea-
surements. They can be mainly related to possible mistakes in the CD-Linter’s
implementation, beyond what we could discover by testing it. The extensive manual
evaluation performed in RQ2 mitigates this threat. In addition, results of RQ2, as
well as the feedback provided by developers (RQ1) gave us indications on how to
make CD-Linter more accurate.

Threats to internal validity concern factors, internal to our evaluation, that
could influence the results. One threat is the subjectiveness of the manual validation
of detected smells in RQ2 (precision and recall). To limit this threat, we employed
two evaluators, which discussed and resolved the cases of disagreement. Also for
the coding of comments that developers posted on opened issues (RQ1), having
two coders limited the subjectiveness of the results. The reactions we got in RQ1

and the results of RQ3 may depend on the characteristics of the analyzed projects.
In particular, projects with different degrees of maturity may adopt CD pipelines
of different complexity, and may or may not adhere to CD principles and good
practices. We have mitigated this threat through the project selection criteria
illustrated in Section 6.4.1.

Threats to external validity concern the generalization of our findings. While we
are aware that GitLab is not as popular as GitHub, its adoption and the number of
repositories there is increasing. As explained in Section 6.4.1, it gives the advantage
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of analyzing projects using the same CD infrastructure. Besides being limited to a
sample (though relatively large) of projects, our evaluation, because of the current
limitations of the CD-Linter’s implementation, is limited to GitLab configuration
files, Maven builds, and Python dependencies. While the detection principles
explained in Section 6.3 can be applied to other pieces of technology, the underlying
concepts would not change. In this paper, our purpose was to study the reaction
of developers to the detection of CD smells, rather than coping with any possible
technology.

6.7 Discussion

The empirical evaluation of CD-Linter, especially the developers’ feedback collected
in RQ1, allowed us to distill useful lessons learned and formulate implications for
future research in this area.

Linters Are Fast and Can Support the Pipeline Definition Undoubtedly, a
paramount advantage of linters is that they are fast and that they can already be
applied in early development phases. Our experiments have shown that CD-Linter
can analyze configuration files from thousands of projects in the order of seconds.
Many of the contacted developers have acknowledged (and often fixed) CD smells
that we have pointed out in the project. We can conclude that using linters to
support the pipeline definition and to catch smells early on is, indeed, a promising
research direction.

Issue Reporting Is Useful, but Must Be Carefully Dosed One problem we
experienced in our empirical evaluation is that some developers are irritated by
(and tend to discard) automatically-posted issues. While we tried to elaborate
in the opened issues that they were a result of a manual review process, some
developers still considered them a sort of spam, even when the suggestion was
meaningful. Recent works show promising results when bots are used to aid software
engineers [60, 61], but we found that developers seem to be sensitive in the context
of issue trackers. Despite some negative reactions, our efforts were generally well-
received by developers though. To mitigate the negative effect described above, one
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author followed-up on all comments on the opened issues, to explain the purpose of
CD-Linter, justify the opened issue, and -most importantly- show that there was a
human in the loop. Overall, involving open-source developers in our research was
valuable for both sides, but it was crucial to take the time and talk to developers
to show respect and emphasize the importance of the research.

Linters Are Intrinsically Imprecise A common issue of linters is their intrinsic
imprecision. Not every deviation from an advocated principle is a smell and, often,
a violation can only be assessed when the specific context is being considered. Such
decisions have to be taken on a case by case basis for a project and go beyond
the scope of static analysis tools. This phenomenon is not specific to CD-Linter
though, the low precision of static analysis tools has already been reported as
an adoption barrier multiple times [19, 52, 138]. In our case, CD-Linter seems
to balance precision and recall well. Despite many rejected smell reports, the
number of fixed reports and the generally positive feedback that we have received
from developers indicate that developers appreciate the effort and that tools like
CD-Linter can have a positive effect on CD practices.

Long and Complex CD Configurations Are Often Smelly While we find rel-
atively few instances of the CD smells in simple configuration files, the density
increases with the length (and complexity). One explanation could be that develop-
ers have to cope with phenomena such as flakiness, the need for manual job triggers,
accepting failures from some jobs, or with special requirements for dependency
management. For such reasons, we expect CD-Linter to be particularly beneficial
for projects with a complex pipeline.

Findings Should Be Reported Quickly One of our lessons learned from RQ1

was that identified issues need to be reported timely, otherwise the issue may
disappear or not be valid. In some cases, the CD smell was resolved already by
the time we were done with validating it, so the reported issues were unnecessary.
Generally, timely reporting is essential in case of issues that involve line numbers
because these are fragile due to frequent source code changes and can be soon
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outdated. In these cases, it might be helpful not to link to the latest version in the
repository, but to the exact commit that has been analyzed for the issue.

Overall, this paper shows a promising future for linters of CI/CD pipelines.
Future linters can extend the ideas in several ways, for example, not only considering
dependency versions, but also other versioned entities in the build configuration,
like build plugins or container images, in which the build is run. The results in
this paper emphasize the need for more research on linters in this domain.

6.8 Related Work

This section describes related work about bad practices and their identification in
CI/CD and infrastructure-as-code scripts.

6.8.1 Bad Practices in CI/CD

In their landmark books about CI [25] and CD [47], previous researchers outlined
wrong decisions while applying CI/CD. The lack of build automation and project
visibility together with the inability to create deployable software are a few examples
of those practices that prevent organizations from achieving the expected benefits.
Duvall collected these and other bad practices in a catalog of 50 anti-patterns
(and their corresponding patterns) that occur during several steps of a CI/CD
pipeline [27]. Zampetti et al. [143] empirically characterized CI bad practices,
finding commonalities but also differences with the ones advocated by Duvall [27].
Anti-patterns also occur because developers face several barriers when adopting
CI/CD [45]. For instance, developers need to debug failures occurring on a remote
server and maintain complex build infrastructures.

The catalogs of anti-patterns and the studies discussed above constitute the
foundations of our work, as we use them to derive principles for which CD-Linter
detects smells.
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6.8.2 Detection of Smells in Development Workflows

Several researchers have proposed approaches to automate the identification, and,
in some cases, the removal of problems arising in build and, more in general,
Infrastructure as Code (IaC) scripts.

Gallaba et al. [34] developed an approach for detecting and eliminating misuses
such as the presence of unused properties and bypassed security checks in Travis-CI
build scripts. While we also statically analyze configuration files, our approach
detects those anti-patterns that are violations of CI/CD principles.

Deviations from such principles have been also investigated by Vassallo et al.
[129]. They proposed CI-Odor, a tool that analyzes artifacts produced during
CI such as logs and revisions to detect anti-patterns (e.g., builds become slow,
developers work on feature branches for a longer period) that occur over time and
cause a CI decay. Differently from this work, we focus on the anti-patterns that
can be statically detected in configuration files.

Troubleshooting build failures is challenging and often causes delays in the
delivery process. A previous work [134] has proposed a taxonomy of build failures
based on their root causes. Researchers have implemented solutions that automati-
cally repair some of these build failure types [66, 120]. Another tool [133] improves
the understandability of build failures through log summarization. Despite those
approaches, developers still allow failures [33, 35]. This strengthens our motivation
for including Fake Success in our linter.

Finally, other related works are devoted to the detection of smells in IaC
scripts. Sharma et al. [108] leveraged best practices associated with code quality
management to assess configuration code quality and derived a catalog of con-
figuration smells for IaC scripts developed in Puppet. While those smells are
more similar to traditional code smells (i.e., they concern with maintainability and
understandability of Puppet code), CD-Linter detects smells specific to the CI/CD
configuration where developers violate principles. Rahman et al. [94] implemented
a linter that detects seven types of security problems in IaC scripts. Their work is
complementary to ours as it deals with a very specific category of problems related
to IaC scripts. Many of their security smells can also occur in CI/CD pipelines.
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6.9 Summary
Previous work has introduced generic [34] or specialized [94] linters that can help
developers to improve their CD configuration. In contrast to previous work on
CI smells that relies on historical information [129], in this paper we proposed
CD-Linter, a static analysis tool able to identify four types of CD smells in CD
pipelines, right when they are introduced in the pipeline configuration. Our
empirical evaluation has shown that the supported CD smells are relevant in
practice, that CD-Linter is accurate, and that the supported smells frequently
occur in the wild. Linters generally suffer from many false positives, sometimes
up to 90% and more [138], but CD-Linter reaches a precision of 87% and recall
of 94%, which represent acceptable results and a good compromise. In a large set
of 5,312 projects, we found that 31% of pipelines with long configuration files are
affected by at least one instance of the detected smells. The empirical evaluation
of CD-Linter, and especially the developer feedback that we have received for RQ1

illustrated the usefulness of CD-Linter and it allowed us to distill useful insights
that can foster the adoption of CD-Linter in practice and stimulate research on
similar tools to further advance this area.
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Abstract

Continuous Integration (CI) is a widely-used software engineering practice. The
software is continuously built so that changes can be easily integrated and issues such
as unmet quality goals or style inconsistencies get detected early. Unfortunately, it
is not only hard to introduce CI into an existing project, but it is also challenging
to live up to the CI principles when facing tough deadlines or business decisions.
Previous work has identified common anti-patterns that reduce the promised
benefits of CI. Typically, these anti-patterns slowly creep into a project over time
before they are identified. We argue that automated detection can help with early
identification and prevent such a process decay. In this work, we further analyze this
assumption and survey 124 developers about CI anti-patterns. From the results, we
build CI-Odor, a reporting tool for CI processes that detects the existence of four
relevant anti-patterns by analyzing regular build logs and repository information.
In a study on the 18,474 build logs of 36 popular Java projects, we reveal the
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presence of 3,823 high-severity warnings spread across projects. We validate our
reports in a survey among 13 original developers of these projects and through
general feedback from 42 developers that confirm the relevance of our reports.

7.1 Introduction

Continuous Integration (CI) is a common development practice and its great
benefits on quality and productivity are widely accepted [124]. CI advocates full
automation of all build steps (i.e., compilation, testing, and code quality assessment)
to create a new version of the software [25]. The CI process is most effective when
developers follow best practices, such as commit often, that reduce conflicts in the
team and ensure that the build is continuously executable [25]. In practice, it is
often challenging to live up to these standards and anti-patterns can be observed:
common but ineffective solutions to a recurring problem that should be avoided. For
example, failing tests are removed instead of fixing the root cause. Over the years,
researchers have defined catalogs of CI anti-patterns [27, 47], which eventually
become a threatening maintainability problem for a software project, if not properly
addressed [25].

A creeping decay of quality has been described before in other contexts.
Fowler [30] popularized the term code smell to describe a symptom that indi-
cates the existence of a deeper problem in the source code. While the perception of
smell is subjective, previous work could show that code smell intensity correlates
with the likelihood of the existence of a deeper issue [85]. The smell metaphor was
later adopted in other areas such as system design [76], configuration files [108], or
spreadsheets [44]. Hence, the idea that a CI anti-pattern manifests itself as a CI
smell as well. In contrast to anti-patterns in development artifacts, CI anti-patterns
affect the software development process and provoke CI decay.

In this paper, we further study this phenomenon. Our results of a broad survey
among 124 professional developers confirm that CI decay is indeed a relevant
problem. Most participants confirm that deviations from CI best practices happen
in practice, both intentionally and unintentionally, and that the benefits of CI
diminish when many deviations exist in a project. The awareness about the presence
of anti-patterns in the CI pipeline is key for an educated decision about whether a
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deviation needs to be fixed. Inspired by Duvall’s catalog of Continuous Integration
and Delivery (CD) anti-patterns [27], we built CI-Odor, an automated detection
and reporting tool that provides awareness about CI decay caused by four different
anti-patterns. Through the analysis of build log and repository information our
tool identifies (1) slow builds, and especially increasing trends of build time, (2)
broken release branch, and the corresponding time-to-fix, (3) skipped failing tests,
and (4) late merging of development branches.

By analyzing a total of 18,474 recent builds logs of 36 popular Java projects,
we identified 3,823 high-severity anti-pattern instances, and 4,697 with medium
severity, spread across all projects. To evaluate our tool, we have surveyed 13
original developers about the relevance of reports (containing recent instances of
detected smells) generated for their project and 42 developers about the general
usefulness of CI-Odor. The reports are perceived as useful, relevant, and most
participants would integrate CI-Odor in their CI pipeline to increase their awareness
about the CI process. We also find untapped potential for future detectors and
that more work on CI anti-patterns is necessary to improve the handling of project
specifics.
In summary, this paper presents the following contributions:

• Verification of the relevance of CI decay in practice;
• Detectors of four relevant CI anti-patterns;
• CI-Odor, an automated CI anti-patterns reporting tool;
• An empirical study on the presence of CI decay and on the developers awareness
about CI anti-patterns.

7.2 Methodology Overview

In this paper, we introduce CI-Odor, an automated reporting tool that can be
integrated into CI pipelines to increase the awareness about anti-patterns in CI.
Figure 7.1 illustrates our methodology to create and evaluate the tool.

This work is based on the existing anti-patterns catalog (1) of Duvall [27], which
describes 50 patterns and anti-patterns that influence the effectiveness of a CI/CD
pipeline. In an internal selection, we identified a subset of CI anti-patterns from this
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Figure 7.1: Overview of the methodology used to build and evaluate CI-Odor

catalog that can be automatically detected by analyzing build log and versioning
information (2). For each of these anti-patterns, we added an explanation and
an illustration of the detection strategy and validated their selection in a survey
among 124 professional software developers (3). We asked the participants about
the relevance of the anti-patterns in practice and the suitability of our detection
strategies. Based on the results of the survey, we eliminated several candidates,
refined our detection strategies, and ended up implementing a set of four detectors
(4). We integrated these detectors in a reporting tool, CI-Odor (5), that aggregates
the different analysis results and that presents statistics such as a trend analyses
to increase the awareness about the different anti-patterns.

We evaluated the usefulness and relevance of the reports created by CI-Odor
in a second survey (6). For the survey, we conducted a case study, in which we
analyzed the build logs of 36 projects (7). The resulting reports (8) are publicly
available and we asked the original developers of these projects to rate them (9).
In addition, we selected reports that illustrate the full capabilities of our reporting
(e.g., there is at least one detected instance of each anti-pattern). We ask both the
original developers and other developers with experience in CI (10) to rate these
example reports.

7.3 Which Anti-Patterns to Detect, and how?

The existing anti-pattern catalog of Duvall [27] is extensive and contains several
examples that go beyond the scope of automated tools, e.g., decisions regarding
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the deployment strategies. We started with selecting a subset of anti-patterns, for
which we could develop appropriate detectors. In this section, we first introduce
our pre-selected list of candidates and the survey that we used to validate and
finalize our selection.

7.3.1 Pre-Selection

The rationale of our pre-selection was two-fold. We wanted to cover different
aspects of the CI pipeline such as version control or build failure management
and exclude others that are more related to CD. At the same time, we selected
anti-patterns that can be detected using data that is typically produced by every
CI pipeline independently from custom settings, i.e., build logs and repository. The
following list introduces all anti-pattern candidates, proposes a detection strategy,
and justifies their relevance for the CI process quality. For traceability, we include
the name of Duvall’s positive example [27].

Late Merging (Merge Daily) Agile teams often develop in features branches. In-
tegration effort and conflict potential increase if completed features are not
integrated timely. We propose to warn about cases in which the last commit of a
branch is older than a predefined threshold.

Aged Branches (Short-Lived Branches) Infrequently synced feature branches sub-
stantially diverge over time and end up being very hard to integrate. We propose
to warn when an open branch has not been merged into master for a release.

Broken Release Branch (Stop the Line) A broken build that is not fixed timely
prevents the CI pipeline from properly assessing the effect of new changes. We
propose to warn when a build stays broken for longer than usual.

Bloated Repository (Repository) Artifacts that can be created in a build or fetched
through provisioning mechanisms should not be committed to the version control
system. We propose to warn when binaries can be found in the repository.

Scheduled Builds (Continuous Integration) A scheduled build either (unnecessar-
ily) builds a change a second time or is a sign that a change is not automatically
built, which breaks the idea of always ensuring a working system. We propose to
warn about build configurations that schedule builds.
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Absent Feedback (Continuous Feedback) Developers are missing out on required
feedback, when they are not automatically notified about relevant build events,
especially build failures. We propose to warn about configuration files that do
not enable any notification channels.

Email-Only Notifications (Visible Dashboards) According to Duvall [25], email is
inappropriate as a single notification channel, because developers might not have
access or notifications get lost among other messages. We propose to warn about
configurations files that only notify by email.

Skip Failed Tests (Automate Tests) Skipping a failed test can fix a broken build
but addresses a symptom rather than fixing the cause. It threatens the safety
provided by the test suite. We propose to warn about cases in which a previously
failed test does no longer occur in the next (fixed) build.

Slow Build (Fast Builds) A slow build, caused by a coding issue or by a high
workload of build server, produces waiting times for developers and adds overhead
to the CI process. We propose to warn about significant build slow-downs.

Please note that these descriptions are shortened introductions from our survey.
A complete version of the first survey is available on our artifact page [128].

Problem Statement
• CI best-practices are no strict rules, they can be adapted for a project.
• One can deviate from CI best-practices unintentionally.
• The benefit of using CI diminishes, the more best-practice deviations exist.
Relevance and Sufficiency of Smell Detection (for all anti-patterns)
• Anti-pattern X is relevant in a typical CI pipeline.
• The detection strategy is sufficient to identify occurrences of an anti-pattern.
General Validation of Idea
• I would integrate such a tool in my CI pipeline.

Figure 7.2: Main questions of the survey on the relevance of CI anti-patterns

7.3.2 Survey on the Practical Relevance

We conducted a survey to validate the relevance of the selected anti-patterns and
the proposed detection rules.
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Survey Design. The survey contains three sections. The first section is about
the perceived severity of the problem of deviations from CI best practices. The
second section has a focus on the anti-patterns. We introduced each one with an
elaborated description that includes explanatory images and asked participants to
evaluate the anti-pattern relevance and our proposed detection strategy. Finally,
we asked for a general validation of the idea of anti-patterns detection.

All survey questions were optional and had Likert scales [83] with either five
(Strong Disagree to Strong Agree) or four levels (None to High). The survey also
contained open questions for feedback in all sections. Figure 7.2 includes an excerpt
of our survey; a complete export is available on our artifact page [128].

Advertisement. We advertised the survey on social media (i.e., Twitter, Reddit sub-
forums dedicated to DevOps and Continuous Integration), in CI-related newsletters,
and by sending it to personal contacts. We promised to raffle off two vouchers to
reward participation.

Demographics. In the end, 605 developers opened our questionnaire, out of which
144 finished all questions, leaving us with a completion rate of 23.8%. We in-
cluded three control questions in the survey that asked about the proficiency in
programming, CI theory, and CI practice. We excluded responses from participants
that reported less than moderate experience in any of these questions. After the
filtering, we ended up with 124 qualified participants. Most of our participants
(79.8%) report that they got in contact with CI in an industry position. 68% of our
participants hold an academic degree related to computer science (32.3% Bachelor,
28.2% Master, 8% Ph.D.). The large majority reports a high level of experience in
programming (76.6%), CI theory (69.4%), and CI practice (59.7%).

Data-Analysis Methodology. To analyze the Likert-scale answers, we create asym-
metric stacked bar charts with proportions for various agreement levels that are
shown in Figure 7.3. We performed card sorting to analyze the open answers [111].
We started by splitting the answers into individual statements, grouped common
arguments, and finally organized these arguments hierarchically.

Problem Statement. The survey results show that deviations from CI best practices
happen in practice. Most participants state that a project can intentionally deviate
from CI best-practices (67.7%) and even more participants agree that a deviation
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might be unintentional (77.3%). The majority of participants (77.4%) agree that
the CI benefits diminish when many best-practice deviations exist. These answers
confirm our conjecture that CI decay is a relevant problem in practice.

Relevance & Detection. Our survey contains questions about the practical relevance
of each anti-pattern and we received a very high level of agreement. Six detectors
have an agreement of >75% and other two have an agreement of >60%. The
only notable exception is Email-Only Notifications for which 30.3% participants
disagree with its relevance. These results confirm that we had pre-selected relevant
anti-patterns.

We asked our participants to rate the sufficiency of our detection strategy for
all anti-patterns. Also here, the agreement is very high (8, >60%, 2, >75%), with
the notable exception being Late Merging (54.1%), for which many participants
point out specific ways to use version control that would have not been detected.
The high agreement makes us confident that we have successfully identified the
“common case” for our detection. However, several people made use of the open
question for each anti-pattern to provide feedback on the detection strategies, such
as pointing out alternate development processes that we did not cover so far.

Revised Detection Strategies. On average, 43 participants answered the open
question about each anti-pattern and we carefully analyzed these answers to revise
or exclude some detectors. Next, we discuss the results of our open card sorting
and how we revised our detection strategies based on the suggestions from the
survey.

Late Merging & Aged Branches Many participants point out similarities between
both anti-patterns. Also, the suggestions for improving the detection strategies
overlap in our answers. As a result, we decided to merge both anti-patterns. The
feedback contains valuable suggestions to improve our simplistic detection strate-
gies: 1. a Git-based detector must support both merge and rebase commands; 2. a
feature branch should not be considered aged when no changes in other branches
occur; 3. the age of a branch is irrelevant, as long as it is frequently synced with
the master; 4. branches marked with release names, e.g., rel-1.2.3, should not
be reported; 5. projects can release multiple times per day, so open branches
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Figure 7.3: Likert-scale answers to the survey on the relevance of CI anti-patterns

frequently span several releases. Overall, we decided to revise our strategy to
incorporate these suggestions and keep the Late Merging anti-pattern.

Broken Release Branch The survey participants broadly agree to the detection of
the anti-pattern (87.8%). Several participants point out that a broken release
branch should never happen, so everybody would be aware of it even without
notification. In addition, we got some minor comments on our detection strategy,
e.g., 1. providing an overview for incidents over time, 2. avoiding to consider the
average time between commits as the commit frequency varies a lot. We decided
to incorporate these suggestions into our detection strategy and to keep Broken
Release Branch.

Bloated Repository Despite the high agreement among the participants (68.8%), we
received several comments against the detection of this anti-pattern: 1. offending
files are language and project specific, but can be easily fixed with a well-defined
.gitignore file; 2. this anti-pattern is not CI specific; 3. several participants
mention good reasons to include binaries, e.g., the availability, reliability, and



226 Chapter 7. Automated Reporting of CI Anti-Patterns and Decay

convenience of provisioning sources. We agreed with these concerns and eliminated
the anti-pattern candidate.

Scheduled Builds Despite a high agreement with the proposed detection strategy
(64.5%), many survey participants point out good reasons for scheduled builds.
These include, for example, running extensive performance tests, UI tests, or
frequently asserting the compatibility with a changing environment. We could
not distinguish between good and bad cases of scheduled builds, so we decided
to drop this candidate.

Absent Feedback & Email-Only Notifications The agreement rate to the detection
strategy of both anti-patterns is high (69.6% and 61.0% respectively). However,
many participants state doubts regarding the detection feasibility: 1. feedback
might be delivered in ways that cannot be automatically checked, e.g., physical
build lights; 2. it is impossible to validate successful notification delivery; 3. the
best notification channel is a personal preference. We agreed with these concerns
and decided to drop both candidates.

Skip Failed Tests The detection strategy for this anti-pattern has a very high
agreement rate (75.8%), but several participants mention good reasons to remove
a test, e.g., removal of functionality. We believe that in these scenarios tests
would either be removed together with production code, or the build would
fail due to a compilation error. Both scenarios would not trigger our detector.
Other participants point out that removing, commenting, and skipping tests
have the same effect, so we should cover all of these cases. Apart from this, we
did not receive further suggestions for improvement. We decided to keep this
anti-pattern.

Slow Build Most participants agree with the detection strategy for this anti-pattern
(81.4%). The main concern mentioned by several participants is the threshold
that is used to identify slow builds. At the same time, previous work mention
that a slow creep is the worst-case scenario for build times [45]. We kept this
anti-pattern.

Overall, we received valuable feedback on all presented anti-pattern candidates.
Following the suggestions of our participants, we dropped Schedule Builds, Absent
Feedback, Email-Only Notifications, and Bloated Repository for the reasons men-
tioned above. We revised the detection strategies of the remaining anti-patterns
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Late Merging (which is now merged with Aged Branches), Slow Build, Broken
Release Branch, and Skip Failed Test and kept them for the remainder of the paper.
General Feedback. The last part of the survey contains a general open question to
provide feedback on the whole CI-Odor idea, which was filled by all 124 participants.
Most of them (30%) mention CI-Odor as useful for CI training and for learning to
adopt CI best practices rigorously also when developers are not familiar with CI
yet [46]. Furthermore, 13% of our participants believe that CI-Odor can reduce
maintenance effort and improve reliability on the CI pipeline. As stated by 18%,
some anti-patterns might go unnoticed without such a tool, which can be useful
to monitor the CI health and take countermeasures when needed. 12% of the
participants suggest to have highly-configurable detectors to support team/organi-
zation specifics in CI pipelines. Finally, 18% of the participants are quite skeptical
about our detectors. As it happens with many quality check tools [138], their main
concern is the likelihood of generating several false positives.

7.4 Reporting CI Practices
To implement a proof-of-concept of CI-Odor, our CI anti-pattern detector, we
first chose supported technologies. We analyzed whether the perceived relevance
of each smell varies across people working on different programming languages.
Based on responses to our previous survey, a Kruskal-Wallis test [109] did not
indicate, for any of the anti-patterns, a statistically significant difference among



228 Chapter 7. Automated Reporting of CI Anti-Patterns and Decay

the four main programming languages the study participants reported as their
main working language (p-value > 0.05), i.e., Java, JavaScript, Python, and Ruby.
Thus, based on their popularity, we decided to focus on Java and Maven as our
target programming language and respective build tool. To lower the likelihood
of build-log deletion [124], we mined build data from TravisCI1 and consequently
repository data from GitHub.2

The overview of our reporting process is shown in Fig. 7.4. Given the TravisCI
build logs of a particular project, we first extract CI-related metrics for every build
(1). We then run detectors on top of this raw data (2) to derive additional metrics
that either indicate the presence of a phenomenon (e.g., a test has been removed)
or a change in a metric (e.g., a change in build time). From all metrics, we provide
a reporting utility that visualizes several dimensions of the CI process, Figure 7.5
shows screenshots for the four different summaries that we include in our reports.
Next, we discuss the details of the detection strategies for the four anti-patterns.

7.4.1 Slow Build

Figure 7.5a shows an example summary of Slow Build that contains the following
items. 1. A bar chart highlighting the average build duration per week over the
considered time window (3 months in our example and in the study of Section 7.5).
2. A linear regression trend line, along with a textual message highlighting whether
the build time is increasing, stable, or decreasing over the observed period. We
also experimented with the use of kernel smoothing, but the resulting trend did
not drastically change, so we favored simplicity here. 3. A list of possible warnings
for the last builds of each branch. Specifically, we report: (i) a Medium-severity
warning when a build was slower than 75% of more builds on the master branch,
i.e., it is in the fourth quartile; (ii) a High-severity warning when the build duration
is an outlier with respect to the distribution of master builds in the observed time
window. We used the box and whisker plot outlier definition [119], i.e., a build is
an outlier when its duration is greater than 3Q+ 1.5 · IQR, where 3Q is the third
quartile and IQR the inter-quartile difference.

1https://travis-ci.org 2https://github.com

https://travis-ci.org
https://github.com
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(a) Slow Build (b) Skip Failed Tests

(c) Broken Release Branch (d) Late Merging

Figure 7.5: Example summaries of the four anti-pattern detectors
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In some cases, and this is especially true for the considered CI infrastructure
(i.e.,Travis-CI), the build time might depend on many external factors, including
the priority given to the project (in Travis-CI projects with a free account get a
low priority). However, we do not consider this a threat in our measurements,
because even in these cases CI-Odor would highlight the need for using a better
infrastructure.

7.4.2 Skip Failed Tests

We first extract the executions of all JUnit tests and their outcomes from each
build log, i.e., the containing Maven module, the test suite name, the number of
executed tests, the number of failed tests (incl. test errors), and the number of
skipped test cases. We then derive a set of test-related CI metrics by matching
tests run in jobs (with the same id) belonging to consecutive builds on the same
branch. Specifically, we compute ∆Runs, i.e., a change in the number of executed
tests, ∆Breaks, i.e., a change in the number of failed tests, and ∆Skipped, i.e., a change
in the number of skipped tests. To mark a test as skipped (in the next build), we
evaluate whether the following expression is true:

(∆Breaks < 0) ∧ (∆Runs < 0 ∨∆Skipped > 0)

Fig. 7.5b shows an example summary that contains: 1. a bar chart depicting
the number of builds per month affected by skip failed tests (note that we adopted
a granularity of one month for this smell, due to its lower frequency than Slow
Build); 2. for each build where such an incident occurred, the list of test suites
affected by the skip failed tests issue.

7.4.3 Broken Release Branch

To detect a broken release branch, we compute the final status of each master

branch build, i.e., its build status, in the build history of a project. In particular,
a build is errored when the install phase, which retrieves and installs the needed
dependencies, returns a non-zero exit code. Instead, it is failed when any subsequent
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phase returns a non-zero exit code. We determine the final status of each build and
consider all the errored and failed builds as broken. Fig. 7.5c shows an example
summary that reports: 1. the average time a release branch remains broken over the
observed time period, considering consecutive broken builds; 2. a bar chart showing,
for each week of the observed period, the number of broken builds; 3. a linear-
regression line and a textual message highlighting the presence of an increasing or
decreasing trend, if any.

7.4.4 Late Merging

We consider four different metrics about version control that help us to identify
the Late Merging anti-pattern: Missed Activity, Branch Deviation, Branch Activity,
and Branch Age. In the following, we introduce the different metrics using the
example history of Fig. 7.6, which contains a master branch and f1 with several
merge commits.

Missed Activity (tMA). Quantifies the amount of activity on other branches of
the same repository since the current branch was last synced with the master,
tMA = tLO − tSync, where tLO is the date of the last commit on other branches and
tSync is the date of the last merge commit. If tMA grows, the potential integration
effort increases. To allow for more specific warnings in the summary, we break
this metric further down into its two components Branch Deviation and Unsynced
Activity.

Branch Deviation (tBD). Quantifies the amount of activity in other branches since
the last change in the current branch, tBD = tLO− tLC, where tLO is the last commit
date on other branches and tLC is the last commit date on the current branch. If
tBD grows, other branches deviate from the current branch, which again increases
the potential integration effort. Negative values mean that the current branch is
ahead of other branches.

Unsynced Activity (tUA). Quantifies the amount of activity in the current branch
since the last sync with the master, tUA = tLC − tSync. A growing tUA indicates a
deviation from the master, and that the potential integration effort increases.

Total Activity (tTA). Quantifies the total amount of activity on a branch since its
creation, tTA = tLC − tFork, where tFork is the date of the branch creation. Feature
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branches should be merged back into the master timely, a growing tTA indicates a
long-running deviation from the master.

When CI-Odor raises a warning. For each of the four metrics mentioned above, we
compare their values with distributions in recent history and consider a Medium-
severity warning if a value is above the third quartile, a High-severity warning if it
is an outlier (using a similar approach to the one in Section 7.4.1).

History Rewrite. Git history can be rewritten, which makes it harder to analyze [13].
We include a second branch f2 in our example to illustrate our handling. We detect
rebasing in build logs by matching the meta-data of a commit that is built (id,
time, committer, message) to meta-data of previous builds on the same branch.
When all meta-data but the id can be matched to a previous commit, we mark this
as a rebasing. In the example, the rebasing of (4) triggers a new build of (4’) at
the date tSync; tFork is the date at which the first build of this branch was triggered.
Now all derived metrics can be calculated as for the previous merge case.

Improved Detection Strategies. We consider two suggested improvements for the
detection strategy. First, in addition to analyzing the build logs, we also analyze
the current repository snapshot for every build to identify deleted branches that
do not need to be reported anymore. Second, we filter out branches that mark
releases, e.g., rel-1.2.

7.5 Empirical Assessment of the CI-Odor Summaries

We conducted a study on open source software projects to assess the accuracy and
usefulness of our reporting. We first performed a selection of candidate projects.
After detecting anti-patterns on such projects, we sent the generated summaries to
the mailing lists/forums of said projects and we asked original developers to fill
out a survey. In addition, we also asked participants to the study of Section 7.3 to
answer the part of the survey concerning the usefulness of the summaries and of
CI-Odor in general.
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Figure 7.6: Example of different late-merging scenarios

7.5.1 Projects Selection

We used data from GHTorrent [39] (version Apr-01-2018) to identify suitable
projects for our study. We filtered projects according to the following criteria: they
are written in Java, have not been deleted, have at least one commit in 2018, have
at least two project members, are no forks, and have been forked at least once.
This initial filtering left us with a set of 2,155 project candidates.

To find projects in this set that perform CI and that are compatible with
CI-Odor, we required the existence of configuration files for Maven (pom.xml) and
TravisCI (.travis.yml), which further reduced our candidates to 467 projects. We
then excluded projects with less than five project members to ensure a certain
community size.

We then extracted build logs from TravisCI for the remaining 103 project
candidates. For some projects, we could not access the logs or only found a
very limited number. As CI-Odor is based on historical analyses and to ensure a
minimum level of activity, we excluded the first quartile from the distribution of
available build logs for these projects, which left us with 70 candidates that have
had at least 54 builds in 2018.
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As the final step, we manually identified the main communication channels for
all remaining projects, because we need to contact the corresponding developers.
Keeping only these projects, for which we found a public mailing list or could
join a closed group channel (such as Google Groups or Slack), we ended up with
a final selection of 36 projects for the validation. These projects cover various
domains like business-oriented software, image processing, development tools and
have a diverse sizes (from 2 thousand to 12 million LOC), ages (from 457 to 25
thousand commits), activity levels (from 60 to 2 thousand builds), team sizes (from
7 to 385 members with a median number of 60.5), and popularity (from 15 to 26
thousand GitHub stars). The full list of these projects on the artifact page of this
paper [128].

7.5.2 Quantification of the Phenomenon

This section provides a short overview of the anti-pattern instances and CI decay
for the 36 projects for which we asked for feedback, with the goal of highlighting
the magnitude of the investigated phenomenon. The analysis concerns a total
of 18,474 builds from January 1, 2018 to August 15, 2018. This results in 8,520
detected incidents, 3,823 if we consider only high-severity warnings for Slow Build
and Late Merging.

Concerning Slow Build, 20 projects exhibit an increasing trend in build time,
whereas only 11 had a decrease, and 5 were stable. The percentage of cases in
which a medium-severity warning could be generated is fairly high, with a median
of 25% of the builds and a maximum (authorjapps/zerocode), where nearly all
builds (93%) are slower than the third quartile of the previous time window. This
indicates a slow increase in the build time, which can be normal project evolution.
A single incident might not be worrisome per se, so we visualize the overall trend
(see Fig. 7.5a). High-severity warnings (i.e., outliers) are not particularly frequent
(75% of the projects have less than 3% of their builds exhibiting this warning),
indicating that while the Slow Build phenomenon is quite pervasive, in most cases
it manifests quite slowly over time.

Even though working on master is discouraged and a pull request paradigm
has been advocated [40], we find Broken Release Branch in all projects: a median



7.5 Empirical Assessment of the CI-Odor Summaries 235

Table 7.1: CI anti-patterns detected in the analyzed projects

Slow Build
Proj. with incr. trend 20
Proj. with decr. trend 11
Proj. with stable trend 5
Overall # of medium sev. warnings 4,634
Overall # of high sev. warnings 229

Min 1Q Median 3Q Max
% of medium sev. warn. 0% 16.80% 25.67% 35.76% 93.87%
% of high sev. warn. 0% 0.44% 1.20% 2.95% 26.73%

Broken Release Branch
Affected projects 36
Total # of incidents 3,423/18,474
Proj. with incr. trend 16
Proj. with decr. trend 19

Min 1Q Median 3Q Max
% of incidents 0.31% 6.46% 11.51% 28.69% 51.10%
Fixing time 54.18 m 9.44 h 17.07 h 3.10 d 6.04 w

Skip Failed Tests
Affected projects 15
Overall # of detected incidents 56

Min 1Q Median 3Q Max
% of affected builds 0.17% 0.24% 0.65% 1.35% 2.47%

Late Merging
Affected projects 35
# of medium severity warnings 63
# of high severity warnings 115

Min 1Q Median 3Q Max
# of affected branches 1 1.5 2 4 20
% of affected branches 25.00% 46.28% 66.67% 100.00% 100.00%

of 11.51% of the master builds are broken. At the same time, our data indicates
that breaks are typically fixed within one day (i.e., the median is about 17h), even
though the median fix time is above 3 days for the upper quartile of projects. We
found one project (rackerlabs/blueflood) for which the master branch remained
broken on average for over 6 weeks.

Skip Failed Test is the least prominent problem in the analyzed project histories.
We found instances of this smell for 15 out of the 36 projects, in a total of 56
builds. The percentage of builds affected by this anti-pattern is below 2.5%. While
instances of the anti-pattern can be found, developers seem to take failed tests
seriously and do not skip them.
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Concrete Questions About a Report (for original developers)
• The report is useful for my project and contains relevant warnings.
• I learned something about my project that I have not been aware of before.
• The results made me curious and I plan to investigate the different warnings.
General Questions About Usefulness of Examples
Slow Build, Failed-Test Skipping, Late Merging:
• This summary helps me to identify anti-pattern X.
• I know how to address the different warnings about anti-pattern X.
• High-severity warnings about anti-pattern X should fail the build.
Broken Release Branch:
• This summary improves awareness about...
– ... the frequency of release-branch failures.
– ... the time it takes to fix release-branch failures.

• I know how to improve the trend of this summary in the future.
General Validation of Tool and Idea
• The CI report provides information that is not available in any other tool.
• The reports provide a good overview of the CI practices used in a project.
• Frequent reports would have a positive influence on CI practices.
• I would like to integrate such a reporting in my own CI pipeline.

Figure 7.7: Questions of the survey on reports generated by CI-Odor

Concerning Late Merging, the anti-pattern affected nearly all projects (35 out
of 36), and we raised a total of 115 high severity warnings, and 63 medium severity
warnings. The median number of branches affected by a warning is 2, and only in
one project Evolveum/midpoint the problem affected 20 branches, although the
median percentage of affected branches is quite substantial (66.67%).

7.5.3 Survey on Generated Reports

We have conducted a second survey study to validate the usefulness of our generated
reports.

Survey Design. To perform the study, we designed a questionnaire composed
of a demographics section plus three sections, each one comprising Likert-scale
questions and a field for open comments. In the first section, we asked original
developers about the report that we have generated for their project. This part was
automatically skipped for developers that have not seen a report. In the second
section, we introduced the four different detector categories through an exemplary
screenshot. We then ask questions about the understandability of the summary, its
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actionability, and whether detected deviations should fail the build (if applicable).
A final section of the survey contained general questions about the usefulness of the
presented summaries. An excerpt (shortened questions, no demographics) of the
survey questionnaire (the complete one is on our artifact page [128]), is depicted in
Fig. 7.7.

Advertisement. We had two separate advertisement strategies to find study partici-
pants. To find original developers, we have created up-to-date summaries for our
selected target projects and posted them on their corresponding communication
channels, asking project members for feedback. At the same time, to receive enough
general feedback about our summaries, we advertised the survey on Twitter, Reddit
(targeting the same sub-forums of the previous survey) and we also sent a follow-up
email to every participant of our first survey that allowed us to contact her again.

Demographics. In the end, 113 developers opened our survey, out of which 50
answered all questions (11 original and 39 general developers), resulting in a
completion rate of 44.2%. We cannot calculate the return rate for the general
population, but we know that we sent the reports out to 36 projects and we heard
back from 7 projects (return rate of 19%). We included the control questions from
our first survey again and excluded from the analysis 7 participants that indicated
low experience. To increase the number of answers, we also kept partial answers.
In total, we considered 42 answers as valid, out of which 13 were given by original
developers.

Data-Analysis Methodology. As for the Likert-scale answers in the first survey (see
Section 7.3), we present the results in asymmetric stacked bar charts (Fig. 7.8). We
have received considerably less open answers, so we did not open-code all answers,
but we will rather discuss the main points raised.

Report Rating. When we asked original developers about the usefulness of the
reports for their projects, almost two-thirds (61.6%) of them agree that the report
was useful and contained relevant information. We analyzed the open answers of
the 23.1% that disagree and found that most either complain about project specifics
that are not considered in the reports or about a bug that we had in the beginning.
We got mixed answers about the novelty of information, the same amount (38.5%)
of agreements and disagreements. This could be a sign that experienced developers
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Level of Agreement

I would integrate CI-Odor
I expect a positive effect

The reports provide a good overview
Info is unavailable in other tools

Broken Rel. Branch: I know how to improve
Broken Rel. Branch: Time-to-Fix Awareness
Broken Rel. Branch: Frequency Awareness

Late Merging: Should Fail the Build
Late Merging: Know how to address

Late Merging: Appropriate Identification
Skip Failed Tests: Should Fail the Build

Skip Failed Tests: Know how to address
Skip Failed Tests: Appropriate Identification

Slow Build: Should Fail the Build
Slow Build: Know how to address

Slow Build: Appropriate Identification
Report made me curious

I learned from report
Report is useful/relevant

Qu
es

tio
n

19.1% 26.2% 54.7% 42 answers
16.3% 16.3% 67.4% 43 answers
16.3% 25.6% 58.2% 43 answers
24.4% 26.8% 48.8% 41 answers
20.5% 29.5% 50.0% 44 answers
13.6% 13.6% 72.7% 44 answers
4.5% 9.1% 86.4% 44 answers
65.9% 13.6% 20.4% 44 answers
11.4% 27.3% 61.4% 44 answers
6.8% 18.2% 75.0% 44 answers
35.6% 11.1% 53.3% 45 answers
13.9% 25.6% 60.5% 43 answers
4.4% 11.1% 84.4% 45 answers
59.6% 15.4% 25.0% 52 answers
25.5% 37.3% 37.3% 51 answers
9.5% 9.4% 81.1% 53 answers
30.8% 30.8% 38.5% 13 answers
38.5% 23.1% 38.5% 13 answers
23.1% 15.4% 61.6% 13 answers

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 7.8: Likert-scale answers to the survey on reports generated by CI-Odor

are aware of these deviations in their project, but we did not have a question in
the survey to back up this conjecture. We got a similar result when we asked
about their reaction. 38.5% of original developers agree that the report made them
curious and that they plan an investigation. Overall, we see these results as a sign
that the reports are insightful for developers and introduce a minimal overhead.

Identification and Awareness. Across all anti-pattern detectors, the large majority
(Slow Build: 81.1%, Skip Failed Tests: 84.4%, Late Merging: 75%, Broken Release
Branch: 86.4% and 72.7%) of participants agree that the summaries are useful for
anti-patterns identification and for increased awareness respectively. This makes
us confident that we opted for the right statistics and picked good visualization
strategies.

Actionability. The majority of participants agree that they know how to address
the warnings for Skip Failed Tests (60.5%) and Late Merging (61.4%), which is
unsurprising because the report points to concrete problems to fix. However, a
considerable number of participants disagree for Broken Release Branch (20.5%)
and especially for Slow Build (25.5%). Given the high agreement on Identification
and Awareness, we think that the disagreement on actionability is a sign that the
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report unveils the problem, but that deriving a fix is harder because it affects the
process and team practices.

On Using CI-Odor to Fail Builds. The majority of participants disagree with
the idea that a build should fail when it is slow (59.6%) or when signs of a Late
Merging exist (65.9%) and only a small group agrees with this idea (25% and
20.4%). Although build failures provide feedback about issues in newly committed
code such as bugs [10] or poor quality [142], our participants typically do not want
detected anti-patterns in the CI process to break the build. The only exception
is represented by Skip Failed Tests, where 53.3% are in favor of failing the build.
From the open answers in the first survey, we know that some developers see this
anti-pattern as a serious problem.

General Validation. The last part of the survey contained several statements about
the validity of the reports and the general idea. 58.2% of the participants agree that
the summaries are useful and that they contain relevant information for the project.
67.4% expect a positive effect from integrating our tool to their CI discipline and
54.7% are willing to integrate CI-Odor in their pipeline.

7.6 Discussion

This paper has introduced the idea that monitoring the CI process might be useful
to discover the decay of best practices over time. Building a proof-of-concept
implementation, CI-Odor, and surveying developers about the idea and our tool,
we gained several valuable insights into the perceived or expected benefits of such
an approach and actionable findings that have an impact on future work.

Positive Effect & Awareness. The first survey has shown us that anti-patterns are
a relevant problem for CI. Best practices are not always being followed, and
can even be accidentally broken. Almost two-thirds of the participants to the
second survey expect that using such a reporting frequently would have a positive
influence on their CI discipline.

Transparency. The study participants suggested that the tool should make the
detection strategy fully transparent to increase the trust and acceptance among
its users. We only briefly described the detection rules in the summary pages, to
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allow study participants performing their task efficiently, but a production-ready
tool could involve a fully-fledged description of the detectors.

Learnability. Participants of our first survey confirmed the usefulness of the pro-
posed CI monitoring, especially in the early stages of CI adoption or to train
project newcomers. Nearly half of the participants of our second survey were
already aware of most of the highlight problems, but it is important to remark
that our analysis excluded inexperienced developers about CI. The potential of a
regular CI report can be seen by the 38.5% of participants that got curious from
the report and started to investigate the reported issues.

Configurability. Our first survey indicated that since projects are very different,
developers may want the reports and the detection thresholds to be customized
based on their needs. While half of our participants are willing to integrate an
anti-pattern detector in their pipeline, this percentage could increase by enhancing
usability and reconfigurability, e.g., giving the freedom to enable/disable specific
detectors or configure thresholds.

Ultimately, the important question is how useful a concrete report is, therefore
we have asked original developers to rate the report that we have generated for
their project. The low disagreement rate in this question (23%) and the high
agreement for the integration in their own pipeline (55%) make us confident that
the described reporting is a promising tool for software development teams that
follow CI principles.

7.6.1 Threats to Validity

Threats to construct validity are related to the relationship between theory and
observations. They mainly concern:

Implementation Bugs. Our implementation might contain bugs that cause the tool
to report false positives or false negatives. While the absence of a labeled dataset
made it hard to evaluate the detection strategies, we mitigated this threat through
a manual review of a sample of the generated results and through a pilot study
conducted before the second survey.

Build Cleanup. Travis-CI allows projects to delete their old build logs, e.g., as part
of regular maintenance activities, and this could affect the historical analyses



7.6 Discussion 241

our tool performs. However, previous work has shown that such deletions are
unlikely [124], so we do not expect that our results are significantly affected.

Threats to internal validity are related to confounding factors internal to our
study. In particular, the validation of our summaries could be affected by our
selection of projects. We have mitigated this by selecting a diverse set of projects
from GitHub and ensured a certain level of maturity by considering the popularity
of a project. Unfortunately, our data source, GHTorrent, only approximates the
number of committers in a project, which might result in a less diverse project
sample.

Threats to external validity concern the work’s generalizability and are related
to:

Sample Size and Diversity. Our evaluation would surely benefit from the analysis
of a larger sample of projects, as well as of the participation of more developers.
In this work, the analysis of projects was limited to the ones for which we ask
for feedback, and the technological limitations (Java, Maven) do not affect the
relevance of the detected anti-patterns, as explained in Section 7.4.

Irrelevant Selection of Anti-Patterns. It is possible that our work missed anti-
patterns that are highly-relevant for developers. We have reduced this threat
through a first internal pre-selection of supported anti-patterns, which we vali-
dated in our first survey. Also, it is important to remark that it is not our goal
to provide a comprehensive detector for all anti-patterns proposed by Duvall
[27], but rather to propose and validate the idea — and its implementation in
CI-Odor — of reporting CI decay to developers.

7.6.2 Future Work

Add Additional Detectors. While, as stated above, we validated the general CI-
Odor perspective and four relevant anti-patterns, our future work primarily goes
into providing additional detectors for new anti-patterns.

Consider More Contextual Information. Right now, we only leverage information
from the Travis-CI logs and basic information from the code repositories. However,
future work would integrate additional process-related metrics derived from other
sources like bug trackers, task management systems, or communication platforms.
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Support More Project-Specific Policies. A CI-supporting tool with smart capabili-
ties could learn the problems/warnings in which developers are interested in, and
personalize the recommendation consequently.

Derive Project-Specific Thresholds. While we considered thresholds based on con-
solidated statistics, future work could also consider adaptive, project-specific
threshold learning and calibration.

7.7 Related Work

Researchers have investigated the CI adoption [46, 53, 59, 113], finding, in particular,
numerous barriers for CI adoption [45], e.g., related to assurance, security, and
flexibility in performing tasks such as source code debugging. In such a context,
approaches like CI-Odor can be used to help developers understanding when they
are not using CI properly.

Previous work has investigated best practices while using CI [145]. In their
landmark work, Duvall et al. [25] identified principles and key practices of CI but
also pointed out the risks deriving from the misuse of CI. Furthermore, Humble
and Farley [47] performed a broader study, analyzing the key ingredients of a
Continuous Delivery (CD) pipeline, as well as anti-patterns to be avoided. Such
anti-patterns were better explained in the follow-up work by Duvall [27] where all
the practices contained in books about CI [25] and CD [47] were condensed in a
catalog of bad/good practices regarding the adoption of the whole CD pipeline with
specific focus on the core part of CD, i.e., CI. Such a catalog is a comprehensive
set of 50 patterns and anti-patterns regarding several phases or relevant topics in
the CI/CD process. As explained in Section 7.3, Duvall’s catalog constitutes the
inception of our work.

One of the best practices associated with CI is the use of Infrastructure as Code
(IaC) in order to implement the desired pipeline. Sharma et al., leveraged best
practices associated with code quality management to assess configuration code
quality and proposed a catalog of 13 implementation and 11 design configuration
smells [108]. Recent work by Gallaba et al., [34] also investigated configuration
smells and based on rules provided by linters (e.g., TravisLint) they measure smells
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and derive automated fixes for them. Our smells have a different focus, because we
look at process-related smells rather than at configuration issues.

Rahman and Williams [91, 95] proposed a text-mining approach to identify
defective IaC scripts, focusing on security and privacy issues, e.g., related to file
permissions or user accounts. Their work is complementary to ours as it deals with
a very specific category of problems.

Studying and proposing automated fixed for build failures has also been a topic of
investigation. Previous work has investigated the phenomenon of build failures [100,
134] from different perspectives, such as testing [10] and code analysis [142]. Also,
researchers have proposed fixes for some kinds of build failures, e.g., broken
dependencies related [66], or proposed approaches to augment the comprehensibility
of build logs while inspecting the cause of such failures [131]. Our CI smells detector
increases the awareness of developers about problems degrading their current CI
practice. Given that our smells are just symptoms of bad practices we do not
provide any automated fix for such issues but we let developers decide whether
taking action or not.

7.8 Summary

This paper investigates the phenomenon that CI development practices decay over
time. We survey 124 developers (80% from industry) to understand the problem.
Beyond agreeing on the problem relevance, our respondents also confirm that CI
anti-patterns are a major cause for the degradation of CI processes. To support
developers in preventing CI pipeline from deteriorating we propose CI-Odor, an
automated reporting tool of CI anti-patterns. We validate our approach, CI-Odor,
by surveying 13 original developers about summaries for their projects, and by
asking another 42 developers about the general usefulness. The results show that
CI-Odor increases the awareness about CI anti-patterns, is perceived as useful, and
that developers would integrate it into their pipeline.
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